
Sampling and Experimental Design
STAT 332

Winter 2021 (1211)1

Cameron Roopnarine2 Riley Metzger3

January 11, 2022

1Online Course
2LATEXer
3Instructor



Contents

Contents 1

1 Assignment 1 3
1.1 Lecture 1.00: PPDAC + Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Lecture 2.00: Models, Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Lecture 3.00: Independent Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Lecture 4.00: Models 2A and 2B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Lecture 5.00: Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Lecture 6.00: Model 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Lecture 7.00: MLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.8 Lecture 8.00: LS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.9 Lecture 9.00: LS Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.10 Lecture 10.00: Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.11 Lecture 11.00: Estimators Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.12 Lecture 12.00: Sigma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.13 Lecture 13.00: Sigma Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.14 Lecture 14.00: CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.15 Lecture 15.00: CI Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.16 Lecture 16.00: HT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.17 Lecture 17.00: HT Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Assignment 2 19
2.1 Lecture 18.00: Model 5, Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Lecture 19.00: Model 5, Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Lecture 20.00: Model 5, Estimators 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Assignment 3 22
3.1 Lecture 21.00: Model 5, Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Lecture 22.00: Model 5, Example 1 Cont. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Lecture 23.00: Model 5, Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Lecture 24.00: ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Lecture 25.00: F Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Lecture 26.00: F Test, Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Assignment 4 33
4.1 Lecture 27.00: Model 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Unbalanced CRD Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Lecture 28.00: Model 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Lecture 29.00: Model 7, Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Assignment 5 39
5.1 Lecture 30.00: Factorial Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1



CONTENTS 2

5.2 Lecture 30.50: Factorial Designs, Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.1 Determining Interaction (Method 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.2 Determining Interaction (Method 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.3 Determining Interaction (Method 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Assignment 6 43
6.1 Lecture 31.00: Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Lecture 32.00: Model 1 Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Lecture 33.00: Sample Size Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4 Lecture 34.00: Model 4 Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5 Lecture 35.00: SRS Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Assignment 7 49
7.1 Lecture 36.00: Regression Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Lecture 37.00: Regression Sampling, Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3 Lecture 38.00: Regression Sampling, Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 Assignment 8 58
8.1 Lecture 39.00: Ratio Estimation (Ave.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.2 Lecture 40.00: Ratio Estimation (Ave.), Example . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.3 Lecture 41.00: Ratio Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.4 Lecture 41.50: Taylor’s Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.5 Lecture 42.00: Ratio Estimation, Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

9 Assignment 9 65
9.1 Lecture 43.00: Stratified Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.2 Lecture 44.00: Stratified, Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.3 Lecture 45.00: Stratified Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

9.3.1 Stratified 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.3.2 Stratified 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.3.3 Stratified 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9.4 Lecture 46.00: Post Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.5 Lecture 47.00: Non-Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

10 Appendix 72
10.1 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

10.1.1 𝒩(0, 1) Cumulative Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.1.2 𝑡 Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



Chapter 1

Assignment 1

1.1 Lecture 1.00: PPDAC + Example
PPDAC: Problem, Plan, Data, Analysis, Conclusion.

1. Problem: Define the problem.

• Target population (TP): The group of units referred to in the problem step.

• Response: The answer provided by the TP to the problem.

• Attribute: Statistic of the response.

EXAMPLE 1.1.1

What is the average grade of the students in STAT 101?
– Target population: All STAT 101 students
– Response: Grade of a STAT 101 student.
– Attribute: Average grade.

2. Plan: How exactly are you going to answer the problem you posed yourself?

• Study population (SP): The set of units you can study. The study population is not necessarily a
subset of the target population.

EXAMPLE 1.1.2

Does a drug reduce hair loss?
– Target population: People.
– Study population: Mice.

Note that mice is not a subset of people, so the study population and target population are
not subsets of one another.

• Sample: A subset of the study population. In the prior example, it would be the set of mice you
select from your study population that are of interest in the sample.

• Data: Collect the data, according to the plan.

3. Analysis: We analyze the data.

4. Conclusion: Refers back to the problem. We also note some common errors.

(a) Study error: The attribute of the population the target population differs from the parameter of
the study population.
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EXAMPLE 1.1.3

Mathematically we can write it down as 𝑎(TP)−𝜇, however this error is qualitative. Therefore,
we cannot actually calculate it.

(b) Sample error: The parameter differs from the sample statistic, sometimes called an estimate.

EXAMPLE 1.1.4

Mathematically we can write it down as 𝜇 − ̄𝑥, however this error is qualitative. Therefore,
we cannot actually calculate it.

(c) Measurement error: The difference between what we want to calculate and what we do calculate.

EXAMPLE 1.1.5

IQ is an interesting thing. You want to measure somebody’s intelligence, and yet if you go
and actually calculate it, they’re using various statistical tests or various psychological tests
that could have a lot of measurement error.

1.2 Lecture 2.00: Models, Model 1

DEFINITION 1.2.1: Model

A model relates a study population parameter to a response.

DEFINITION 1.2.2: Model 1

Model 1 is defined as
𝑌𝑗 = 𝜇 + 𝑅𝑗 where 𝑅𝑗 ∼ 𝒩(0, 𝜎2)

where
• 𝑌𝑗: random parameter that is the response of unit 𝑗.
• 𝜇: study population parameter. In this case, it’s the mean and is non-random. However, it is

unknown.
• 𝑅𝑗: error term. It gives the distribution of responses about 𝜇.

𝜇
𝑅𝑗

𝑦𝑗

Figure 1.1: 𝑅𝑗 diagram

REMARK 1.2.3

• 𝑅𝑗’s are always independent.
• Gauss’ Theorem: Any linear combination of normal random variables is normal.
• 𝑌𝑗 ∼ 𝒩(𝜇, 𝜎2) since

E[𝑌𝑗] = E[𝜇 + 𝑅𝑗] = E[𝜇] + E[𝑅𝑗] = 𝜇 + 0 = 𝜇

V(𝑌𝑗) = V(𝜇 + 𝑅𝑗) = V(𝑅𝑗) = 𝜎2
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EXAMPLE 1.2.4

We are interested in the average grade of STAT 101 students.

𝑌𝑗 = 𝜇 + 𝑅𝑗 where 𝑅𝑗 ∼ 𝒩(0, 𝜎2)

That would be a good place for us to use it because in our response the grade is related to the average
grade of the class plus some error.

1.3 Lecture 3.00: Independent Groups
• Dependent: we randomly select one group and find a match, having the same explanatory variates, for

each unit of the first group. For example, twins, reusing members of a group, or matching.

• Independent: are formed when we select units at random from mutually exclusive groups. For example,
broken parts and non-broken parts.

1.4 Lecture 4.00: Models 2A and 2B
DEFINITION 1.4.1: Model 2A

Model 2A is used when we assume the groups have the same standard deviation and is defined as

𝑌𝑖𝑗 = 𝜇𝑖 + 𝑅𝑖𝑗 (𝑅𝑖𝑗 ∼ 𝒩(0, 𝜎2))

where
• 𝑌𝑖𝑗: response of unit 𝑗 in group 𝑖.
• 𝜇𝑖: mean for group 𝑖.
• 𝑅𝑖𝑗: the distribution of responses about 𝜇𝑖.

DEFINITION 1.4.2: Model 2B

Model 2B is used when 𝜎1 ≠ 𝜎2 and is defined as

𝑌𝑖𝑗 = 𝜇𝑖 + 𝑅𝑖𝑗 (𝑅𝑖𝑗 ∼ 𝒩(0, 𝜎2
𝑖 ))

1.5 Lecture 5.00: Model 3
We subtract Model 2A from Model 2B to model a difference between two groups, and we get Model 3.

𝑌1𝑗 = 𝜇1 + 𝑅1𝑗
− 𝑌2𝑗 = 𝜇2 + 𝑅2𝑗

𝑌1𝑗 − 𝑌2𝑗 = 𝜇1 − 𝜇2 + 𝑅1𝑗 − 𝑅2𝑗

Let

• 𝑌1𝑗 − 𝑌2𝑗 = 𝑌𝑑𝑗

• 𝜇1 − 𝜇2 = 𝜇𝑑

• 𝑅1𝑗 − 𝑅2𝑗 = 𝑅𝑑𝑗
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DEFINITION 1.5.1: Model 3

Model 3 is defined as
𝑌𝑑𝑗 = 𝜇𝑑 + 𝑅𝑑𝑗 (𝑅𝑑𝑗 ∼ 𝒩(0, 𝜎2

𝑑))

EXAMPLE 1.5.2: Model 3

Heart Rate Before Exercise Heart Rate After Exercise 𝑑

70 80 10
80 100 20
90 90 0

We could use Model 3.

1.6 Lecture 6.00: Model 4
Suppose 𝑌 ∼ Binomial(𝑛, 𝑝); that is, we have 𝑛 outcomes where each outcome is binary.

E[𝑌 ] = 𝑛𝑝

V(𝑌 ) = 𝑛𝑝(1 − 𝑝)

By the Central Limit Theorem, 𝑌 ⋅∼ 𝒩(𝑛𝑝, 𝑛𝑝(1 − 𝑝)). The proportion is

𝑌
𝑛

⋅∼ 𝒩(𝑝, 𝑝(1 − 𝑝)
𝑛

)

Let’s find the expected value and variance of 𝑌 /𝑛.

E[𝑌
𝑛

] = E[𝑌 ]
𝑛

= 𝑛𝑝
𝑛

= 𝑝

V(𝑌
𝑛

) = V(𝑌 )
𝑛2 = 𝑛𝑝(1 − 𝑝)

𝑛2 = 𝑝(1 − 𝑝)
𝑛

DEFINITION 1.6.1: Model 4

Model 4 is defined as
𝑌
𝑛

∼ 𝒩(𝑝, 𝑝(1 − 𝑝)
𝑛

)

1.7 Lecture 7.00: MLE
• What is MLE? It connects the population parameter 𝜃 to your sample statistic ̂𝜃.

• How? It chooses the most probable value of 𝜃 given our data 𝑦1, … , 𝑦𝑛.

Process:

(1) Define the likelihood function.

𝐿 = 𝑓(𝑌1 = 𝑦1, 𝑌2 = 𝑦2, … , 𝑌𝑛 = 𝑦𝑛)

We assume 𝑌𝑖 ⟂ 𝑌𝑗 for all 𝑖 ≠ 𝑗. Therefore,

𝐿 = 𝑓(𝑌1 = 𝑦1)𝑓(𝑌2 = 𝑦2) ⋯ 𝑓(𝑌𝑛 = 𝑦𝑛)
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(2) Define the log-likelihood function ℓ = ln(𝐿) and use log rules to clean it up!

(3) Find 𝜕ℓ
𝜕𝜃 .

(4) Set 𝜕ℓ
𝜕𝜃 = 0, put hat on all 𝜃’s.

(5) Solve for ̂𝜃.

EXAMPLE 1.7.1

Let 𝑌𝑖𝑗 = 𝜇𝑖 + 𝑅𝑖𝑗 where 𝑅𝑖𝑗 ∼ 𝒩(0, 𝜎2).

𝐿 = 𝑓(𝑌11 = 𝑦11, … , 𝑌2𝑛2
= 𝑦2𝑛2

)

=
𝑛1

∏
𝑗=1

𝑓(𝑦1𝑗)
𝑛2

∏
𝑗=1

𝑓(𝑦2𝑗)

=
𝑛1

∏
𝑗=1

1√
2𝜋𝜎

exp{−
(𝑦1𝑗 − 𝜇1)2

2𝜎2 }
𝑛2

∏
𝑗=1

1√
2𝜋𝜎

exp{−
(𝑦2𝑗 − 𝜇2)2

2𝜎2 }

Let 𝑛1 + 𝑛2 = 𝑛, then

𝐿 = (2𝜋)−𝑛/2𝜎−𝑛exp{−
∑𝑛1

𝑗=1(𝑦1𝑗 − 𝜇1)2

2𝜎2 }exp{−
∑𝑛2

𝑗=1(𝑦2𝑗 − 𝜇2)2

2𝜎2 }

The log-likelihood is given by

ℓ = −𝑛
2
ln(2𝜋) − 𝑛 ln(𝜎) −

∑𝑛1
𝑗=1(𝑦1𝑗 − 𝜇1)2

2𝜎2 − −
∑𝑛2

𝑗=1(𝑦2𝑗 − 𝜇2)2

2𝜎2

Now,
𝜕ℓ

𝜕 ̂𝜇1
= 0 + 0 −

∑𝑛1
𝑗=1 2(𝑦1𝑗 − ̂𝜇)(−1)

2𝜎̂2 + 0 = 0

Hence,

0 =
𝑛1

∑
𝑗=1

(𝑦1𝑗 − ̂𝜇) ⟹
𝑛1

∑
𝑗=1

𝑦1𝑗 =
𝑛1

∑
𝑗=1

̂𝜇

Note that 𝑛1

∑
𝑗=1

𝑦1𝑗 = 𝑛1
𝑛1

𝑛1

∑
𝑗=1

𝑦1𝑗 = 𝑛1 ̄𝑦1+

Therefore,
𝑛1 ̄𝑦1+ = 𝑛1 ̂𝜇 ⟹ ̄𝑦1+ = ̂𝜇1

By symmetry,
̄𝑦2+ = ̂𝜇2

The second partial is

𝜕ℓ
𝜕𝜎

= 0 + (−𝑛)
𝜎̂

−
∑𝑛1

𝑗=1(𝑦1𝑗 − ̂𝜇1)2

2
(−2𝜎̂−3) − −

∑𝑛2
𝑗=1(𝑦2𝑗 − ̂𝜇2)2

2
(−2𝜎̂−3)

Multiply both sizes by 𝜎̂3, yields

0 = −𝑛𝜎̂2 +
𝑛1

∑
𝑗=1

(𝑦1𝑗 − ̂𝜇1)2 +
𝑛2

∑
𝑗=1

(𝑦2𝑗 − ̂𝜇2)2
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Divide both sizes by 𝑛 and rearrange to get

𝜎̂2 =
∑𝑛1

𝑗=1(𝑦1𝑗 − ̂𝜇1)2 + ∑𝑛2
𝑗=1(𝑦2𝑗 − ̂𝜇2)

𝑛

Recall that
𝑠2 =

𝑛
∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2

𝑛 − 1

𝑠2
1 =

𝑛1

∑
𝑗=1

(𝑦1𝑗 − ̄𝑦1+)2

𝑛1 − 1

𝑠2
2 =

𝑛2

∑
𝑗=1

(𝑦2𝑗 − ̄𝑦2+)2

𝑛2 − 1

Therefore,

𝜎̂2 = 𝑠2
𝑝 = (𝑛1 − 1)𝑠2

1 + (𝑛2 − 1)𝑠2
2

𝑛1 + 𝑛2 − 2

1.8 Lecture 8.00: LS
• What is LS? Another technique to find ̂𝜃.

• How? It minimizes the “residuals.”

• Models:
Response = Deterministic Part + Random Part

𝑌 = 𝑓(𝜃) + 𝑅

Let 𝑦1, 𝑦2, … , 𝑦𝑛 be realizations of 𝑌. Let ̂𝑦𝑖 = 𝑓( ̂𝜃), where 𝑓( ̂𝜃) is simply 𝑓(𝜃) with 𝜃 replaced by ̂𝜃. We
call ̂𝑦𝑖 our “prediction.”

DEFINITION 1.8.1: Residual

A residual is
𝑟𝑖 = 𝑦𝑖 − 𝑓( ̂𝜃) = 𝑦𝑖 − ̂𝑦𝑖

Process:

(1) Define the 𝑊 function, 𝑊 = ∑ 𝑟2.

(2) Calculate 𝜕𝑊
𝜕𝜃 for all non-𝜎 parameters

(3) Set 𝜕𝑊
𝜕𝜃 = 0 and replace 𝜃 by ̂𝜃.

(4) Solve for ̂𝜃.

1.9 Lecture 9.00: LS Example
Let’s determine the LS of Model 2A.

𝑌𝑖𝑗 = 𝜇𝑖 + 𝑅𝑖𝑗
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Also, let 𝑛 = 𝑛1 + 𝑛2.

𝑊 = ∑
𝑖𝑗

𝑟2
𝑖𝑗 = ∑

𝑖𝑗
(𝑦𝑖𝑗 − ̂𝜇𝑖)2

=
𝑛

∑
𝑗=1

2
∑
𝑖=1

(𝑦𝑖𝑗 − ̂𝜇𝑖)2

=
𝑛1

∑
𝑗=1

(𝑦1𝑗 − ̂𝜇1)2 +
𝑛2

∑
𝑗=1

(𝑦2𝑗 − ̂𝜇2)2

0 = 𝜕𝑊
𝜕 ̂𝜇1

=
𝑛1

∑
𝑗=1

(𝑦1𝑗 − ̂𝜇1)(−2)

= 𝑛1
𝑛1

𝑛1

∑
𝑗=1

𝑦𝑖𝑗 −
𝑛1

∑
𝑗=1

̂𝜇1

= 𝑛1 ̄𝑦1+ − 𝑛 ̂𝜇1

Therefore, ̂𝜇1 = ̄𝑦1+ and by symmetry ̂𝜇2 = ̄𝑦2+.

REMARK 1.9.1

For LS, 𝜎̂2 is always of the form

𝜎̂2 = 𝑊
𝑛 − 𝑞 + 𝑐

where
• 𝑛 = number of units
• 𝑞 = number of non-𝜎 parameters
• 𝑐 = number of constraints

Note that 𝜎̂2 = 𝑠2
𝑝.

REMARK 1.9.2: MLE versus LS

• LS is from 1860s. Unbiased provided 𝑅𝑗 is normal.
• MLE is a recent technique, and it is much more flexible since it does not require 𝑅𝑗 to be normal.
• Minimum? You need to calculate the second derivative, but we’re too lazy and not rigorous in this

course.

1.10 Lecture 10.00: Estimators
Our sample data is 𝑦1, … , 𝑦𝑛. It is non-random and is a realization of a random variable 𝑌1, … , 𝑌𝑛. A statistic
is a function of the sample data; ̂𝜃. It is non-random, but if 𝑦1, … , 𝑦𝑛 changes, then so does ̂𝜃. For that reason,
you can think of ̂𝜃 as the realization of a random variable ̃𝜃, called an estimator. To move from ̂𝜃 to ̃𝜃 we
capitalize our 𝑌’s.

EXAMPLE 1.10.1

Model 2A: ̂𝜇1 = ̄𝑦1+⎵⎵⎵
STATISTIC

→ ̃𝜇1 = ̄𝑌1+⎵⎵⎵⎵
ESTIMATOR
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THEOREM 1.10.2: Gauss’ Theorem

Any linear combination of normal random variables is still normal.

EXAMPLE 1.10.3

Let 𝑋 ∼ 𝒩(𝜇𝑋, 𝜎2
𝑋), 𝑌 ∼ 𝒩(𝜇𝑌, 𝜎2

𝑌) be independent random variables and 𝑎, 𝑏, 𝑐 ∈ R, then

𝐿 = 𝑎𝑋 + 𝑏𝑌 + 𝑐 ∼ 𝒩(E[𝐿],V(𝐿))

THEOREM 1.10.4: Central Limit Theorem (CLT)

Let 𝑌1, … , 𝑌𝑛 be i.i.d. random variables with E[𝑌𝑖] = 𝜇, V(𝑌𝑖) = 𝜎2 < ∞, then

̄𝑌 ∼ 𝒩(𝜇, 𝜎2

𝑛
)

1.11 Lecture 11.00: Estimators Example

EXAMPLE 1.11.1

Model 2A: 𝑌𝑖𝑗 = 𝜇𝑖 + 𝑅𝑖𝑗 where 𝑅𝑖𝑗 ∼ 𝒩(0, 𝜎2). What is the distribution of ̃𝜇?
Solution. Using LS or MLE we obtain

̂𝜇 = ̄𝑦1+

Or corresponding estimator is

̃𝜇1 = ̄𝑌1+ =
∑𝑛1

𝑗=1 𝑌1𝑗

𝑛1

and by Gauss it is normal!

E[ ̃𝜇1] = E[
∑𝑛1

𝑗=1 𝑌1𝑗

𝑛1
] =

∑𝑛1
𝑗=1 E[𝑌1𝑗]

𝑛1
=

∑𝑛1
𝑗=1 E[𝜇1 + 𝑅1𝑗]

𝑛1
=

∑𝑛1
𝑗=1 𝜇1 + E[𝑅1𝑗]

𝑛1
= 𝜇1

DEFINITION 1.11.2: Unbiased estimator

If E[ ̃𝜃] = 𝜃, we say ̃𝜃 is an unbiased estimator of 𝜃.
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V( ̃𝜇1) = V( ̄𝑌1+)

= V(
∑𝑛1

𝑗=1 𝑌1𝑗

𝑛1
)

= 1
𝑛2

1
V(

𝑛1

∑
𝑗=1

𝑌1𝑗)

= 1
𝑛2

1

𝑛1

∑
𝑗=1

V(𝑌𝑖𝑗) since 𝑌1𝑗 ⟂ 𝑌1𝑖

= 1
𝑛2

1

𝑛1

∑
𝑗=1

V(𝜇1 + 𝑅1𝑗)

= 1
𝑛2

1

𝑛1

∑
𝑗=1

V(𝑌1𝑗)

= 1
𝑛2

1
(𝑛1𝜎2)

= 𝜎2

𝑛1

Therefore,

̃𝜇1 ∼ 𝒩(𝜇1, 𝜎2

𝑛1
)

and by symmetry

̃𝜇2 ∼ 𝒩(𝜇2, 𝜎2

𝑛2
)

1.12 Lecture 12.00: Sigma

THEOREM 1.12.1

Let 𝑍 ∼ 𝒩(0, 1), then 𝑍2 ∼ 𝜒2(1)

THEOREM 1.12.2

Let 𝑋 ∼ 𝜒2(𝑚), 𝑌 ∼ 𝜒2(𝑛) be independent, then

𝑋 + 𝑌 ∼ 𝜒2(𝑛 + 𝑚)

THEOREM 1.12.3

Let 𝑍 ∼ 𝒩(0, 1) and 𝑋 ∼ 𝜒2(𝑚), then
𝑍

√𝑋/𝑚
∼ 𝑡(𝑚)

THEOREM 1.12.4

Let 𝑌 = (𝑛 − 𝑞 + 𝑐)𝜎̃2

𝜎2 , then 𝑌 ∼ 𝜒2(𝑛 − 𝑞 + 𝑐).
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1.13 Lecture 13.00: Sigma Example

EXAMPLE 1.13.1

Model 1: 𝑌𝑗 = 𝜇 + 𝑅𝑗 where 𝑅𝑗 ∼ 𝒩(0, 𝜎2). What is the distribution of
̃𝜇 − 𝜇

𝜎̃/
√

𝑛
?

Solution. We know by LS or MLE that ̂𝜇 = ̄𝑦+, therefore ̃𝜇 = ̄𝑌+. We know ̃𝜇 ∼ 𝒩(𝜇, 𝜎2

𝑛 ). Standardiz-
ing:

𝑍 = ̃𝜇 − 𝜇
𝜎/

√
𝑛

∼ 𝒩(0, 1)

By Theorem 1.12.4, we know

𝑋 = (𝑛 − 1)𝜎̃2

𝜎2 ∼ 𝜒2(𝑛 − 1)

By Theorem 1.12.3,

𝑍
√𝑋/(𝑛 − 1)

=

̃𝜇 − 𝜇
𝜎/

√
𝑛

√(𝑛 − 1)𝜎̃2

𝜎2 /(𝑛 − 1)

= ̃𝜇 − 𝜇
𝜎̃/

√
𝑛

∼ 𝑡(𝑛 − 1)

REMARK 1.13.2

Recall that
̃𝜇 − 𝜇

𝜎/
√

𝑛
∼ 𝒩(0, 1)

By replacing 𝜎 by 𝜎̃, we end up using a 𝑡-distribution instead of a normal distribution.

1.14 Lecture 14.00: CI
We assume our estimator is

̃𝜃 ∼ 𝒩(0,V( ̃𝜃))

The CI:
𝜃 ∶ EST ± 𝑐 SE = ̂𝜃 ± 𝑐√V( ̃𝜃)

If we don’t know 𝜎, we replace it by 𝜎̂ and obtain

𝜃 ∶ ̂𝜃 ± 𝑐√V̂( ̃𝜃)

EXAMPLE 1.14.1

Model 1: 𝑌𝑗 = 𝜇 + 𝑅𝑗 where 𝑅𝑗 ∼ 𝒩(0, 𝜎2). By LS we know ̂𝜇 = ̄𝑦+. The estimator is ̃𝜇 = ̄𝑌+ with
distribution

̃𝜇 ∼ 𝒩(𝜇, 𝜎2

𝑛
)

Our CI:
𝜇 ∶ EST ± 𝑐 SE = ̂𝜇 ± 𝑐 𝜎√

𝑛
= ̄𝑦+ ± 𝑐 𝜎√

𝑛
(𝑐 ∼ 𝒩(0, 1))

𝜇 ∶ ̄𝑦+ ± 𝑐 𝑠√
𝑛

∼ 𝑡(𝑛 − 1)
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Recall: 𝑠 =
∑𝑛

𝑖=1(𝑦𝑖 − ̄𝑦)2

𝑛 − 1
.

EXAMPLE 1.14.2

Model 2A: 𝑌𝑖𝑗 = 𝜇𝑖 + 𝑅𝑖𝑗 where 𝑅𝑖𝑗 ∼ 𝒩(0, 𝜎2). By LS, ̂𝜇1 = ̄𝑦1+ and ̂𝜇2 = ̄𝑦2+. The estimators
̃𝜇1 = ̄𝑌1+ and ̃𝜇2 = ̄𝑌2+. The distributions are

̃𝜇1 ∼ 𝒩(𝜇1, 𝜎2

𝑛1
)

̃𝜇2 ∼ 𝒩(𝜇2, 𝜎2

𝑛2
)

̃𝜇1 − ̃𝜇2 ∼ 𝒩(𝜇1 − 𝜇2, 𝜎2( 1
𝑛1

+ 1
𝑛2

))

Our CI:

𝜇1 − 𝜇2 ∶ EST ± 𝑐 SE = ̂𝜇1 − ̂𝜇2 ± 𝑐 𝜎√ 1
𝑛1

+ 1
𝑛2

(𝑐 ∼ 𝒩(0, 1))

𝜇1 − 𝜇2 ∶ EST ± 𝑐 SE = ̂𝜇1 − ̂𝜇2 ± 𝑐 𝑠𝑝√ 1
𝑛1

+ 1
𝑛2

(𝑐 ∼ 𝑡(𝑛1 + 𝑛2 − 2))

EXAMPLE 1.14.3

Model 2B: 𝑌𝑖𝑗 = 𝜇𝑖 = 𝑅𝑖𝑗 where 𝑅𝑖𝑗 ∼ 𝒩(0, 𝜎2
𝑖 ).

̃𝜇1 − ̃𝜇2 ∼ 𝒩(𝜇1 − 𝜇2, 𝜎2
1

𝑛1
+ 𝜎2

2
𝑛2

)

Our CI:

̂𝜇1 − ̂𝜇2 ± 𝑐√𝜎2
1

𝑛1
+ 𝜎2

2
𝑛2

(𝑐 ∼ 𝒩(0, 1))

̂𝜇1 − ̂𝜇2 ± 𝑐√ 𝑠2
1

𝑛1
+ 𝑠2

2
𝑛2

(𝑐 ∼ 𝑡(𝑛1 + 𝑛2 − 2))

EXAMPLE 1.14.4

Model 3: 𝑌𝑑𝑗 = 𝜇𝑑 + 𝑅𝑑𝑗 where 𝑅𝑑𝑗 ∼ 𝒩(0, 𝜎2
𝑑), which is the same as Model 1.

𝜇𝑑 ∶ ̄𝑦𝑑+ ± 𝑐 𝜎𝑑√𝑛𝑑
(𝑐 ∼ 𝒩(0, 1))

𝜇𝑑 ∶ ̄𝑦𝑑+ ± 𝑐 𝑠𝑑√𝑛𝑑
(𝑐 ∼ 𝑡(𝑛𝑑 − 1))

EXAMPLE 1.14.5

Model 4:
̃𝑝 ∼ 𝒩(𝑝, 𝑝(1 − 𝑝)

𝑛
)
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Our CI:

̂𝑝 ± 𝑐√ ̂𝑝(1 − ̂𝑝)
𝑛

(𝑐 ∼ 𝒩(0, 1))

Table 1.1: Confidence Intervals

# Model CI d.f.

1 𝑌𝑖 = 𝜇 + 𝑅𝑖
𝑅𝑖∼𝒩(0,𝜎2)

̄𝑦 ± 𝑡∗ 𝑠√
𝑛

𝑛 − 1

2A 𝑌𝑖𝑗 = 𝜇𝑖 + 𝑅𝑖𝑗
𝑅𝑖𝑗∼𝒩(0,𝜎2)

̄𝑦1+ ± 𝑡∗ 𝑠1√𝑛1
𝑛1 − 1

̄𝑦1+ − ̄𝑦2+ ± 𝑡∗𝑠𝑝√ 1
𝑛1

+ 1
𝑛2

𝑛1 + 𝑛2 − 2

2B 𝑌𝑖𝑗 = 𝜇𝑖 + 𝑅𝑖𝑗
𝑅𝑖𝑗∼𝒩(0,𝜎2

𝑖 )
̄𝑦1+ ± 𝑡∗ 𝑠1√𝑛1

𝑛1 − 1

̄𝑦1+ − ̄𝑦2+ ± 𝑡∗√ 𝑠2
1

𝑛1
+ 𝑠2

2
𝑛2

𝑛1 + 𝑛2 − 2

3 𝑌𝑑𝑗 = 𝜇𝑑 + 𝑅𝑑𝑗
𝑅𝑑𝑗∼𝒩(0,𝜎2

𝑑)
̄𝑦𝑑 ± 𝑡∗ 𝑠𝑑√𝑛𝑑

𝑛𝑑 − 1

4
𝑌
𝑛

∼ 𝒩(𝑝, 𝑝(1 − 𝑝)
𝑛

) ̂𝑝 ± 𝑧∗√ ̂𝑝(1 − ̂𝑝)
𝑛

𝒩(0, 1)

1.15 Lecture 15.00: CI Examples

EXAMPLE 1.15.1: Model 1

• Problem: What is the mean calculus grade of students in STAT 332?
• Plan: We randomly select 5 students from the class.
• Data: 65, 70, 80, 85, 75
• Analysis: Build a 95% confidence interval for the mean grade.

𝜇 ∶ ̄𝑦 ± 𝑡∗ 𝑠√
𝑛

y <- c(65, 70, 80, 85, 75)
n <- length(y)
round(mean(y) + c(-1, 1) * qt(0.975, n - 1) * sd(y) / sqrt(n), 2)

The 95% confidence interval is: (65.18, 84.82). We are 95% confident that the mean grade is in the
interval. What we mean is that if we drew 100 samples, and built 100 confidence intervals for these
samples, then we would expect to find 𝜇 in 95 of these intervals that we created. This is not a probability
because at the end of the day, you estimated your data for 𝑦.

EXAMPLE 1.15.2: Model 2A

• Problem: In grade 9, there is a standardized test in Ontario. We wish to compare the mean
performance of girls to boys.

• Plan: They collect data from a class of 30 students; 15 boys and girls. Their response is their
grade on the standardized test. If necessary, assume the variances of the two groups are the same.

• Data:
– Boys: 39, 42, 47, 50, 52, 52, 54, 55, 55, 56, 56, 56, 58, 60, 62
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– Girls: 44, 45, 48, 50, 51, 52, 53, 53, 57, 58, 59, 60, 62, 63, 64
• Analysis: Build a 95% confidence interval for the mean difference in grades.
boys <- c(39, 42, 47, 50, 52, 52, 54, 55, 55, 56, 56, 56, 58, 60, 62)
girls <- c(44, 45, 48, 50, 51, 52, 53, 53, 57, 58, 59, 60, 62, 63, 64)
y_b.bar <- mean(boys)
y_g.bar <- mean(girls)
s_b.sq <- var(boys)
s_g.sq <- var(girls)
n_b <- length(boys)
n_g <- length(girls)
s_p.sq <-
((n_g - 1) * s_g.sq + (n_b - 1) * s_b.sq) / (n_g + n_b - 2)
df <- n_g + n_b - 2
t <- qt(0.975, df)
(y_b.bar - y_g.bar) + c(-1,1) * t * sqrt(s_p.sq * (1 / n_g + 1 / n_b))

• ̄𝑦𝑏+ = 52.9
• ̄𝑦𝑔+ = 54.6
• 𝑠2

𝑏 = 39.6
• 𝑠2

𝑔 = 41
• 𝑠2

𝑝 = 40.3
• 𝑡∗ = 2.048

The 95% confidence interval for the mean difference grade is (−6.4, 3.1). Is there a difference between
male and female grades? Since 0 ∈ (−6.4, 3.1), we conclude there is no difference between male and
female grades.

EXAMPLE 1.15.3: Model 3

• Problem: In grade 9 there is a standardized test in Ontario. We wish to compare the mean
performance of girls to boys.

• Plan: They collect data from a class of 30 students; 15 boys and 15 girls. We select each girl so
that she was born in the same month as a boy in the class. The response is their grade on the
standardized test. Assume the variances of the two groups are different.

• Data:
– Boys: 39, 42, 47, 50, 52, 52, 54, 55, 55, 56, 56, 56, 58, 60, 62
– Girls: 44, 45, 48, 50, 51, 52, 53, 53, 57, 58, 59, 60, 62, 63, 64

• Analysis: Build a 95% confidence interval for the mean difference in grades.
By matching, they have created a dependent group. Paired data implies we use Model 3.

boys <- c(39, 42, 47, 50, 52, 52, 54, 55, 55, 56, 56, 56, 58, 60, 62)
girls <- c(44, 45, 48, 50, 51, 52, 53, 53, 57, 58, 59, 60, 62, 63, 64)
diff <- boys - girls
y_d.bar <- mean(diff)
s_d <- sd(diff)
n_d <- length(diff)
df <- length(diff) - 1
t <- qt(0.975, df)
y_d.bar + c(-1,1) * t * s_d / sqrt(n_d)

• ̄𝑦𝑑+ = 1.7
• 𝑠𝑑 = 2.1
• 𝑛𝑑 = 15
• 𝑡∗ = 2.145

The 95% confidence interval for the mean difference grade is (−2.9, −0.5). Is there a difference between
male and female grades? Since 0 ∉ (−2.9, −0.5), we conclude there is a difference between male and
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female grades. In fact, we may argue that the boys are doing worse than the girls.

EXAMPLE 1.15.4: Model 2B

• Problem: In grade 9 there is a standardized test in Ontario. We wish to compare the mean
performance of girls to boys.

• Plan: They collect data from a class of 30 students; 15 boys and 15 girls. The response is their
grade on the standardized test. Assume the variances of the two groups are different.

• Data:
– Boys: 39, 42, 47, 50, 52, 52, 54, 55, 55, 56, 56, 56, 58, 60, 62
– Girls: 44, 45, 48, 50, 51, 52, 53, 53, 57, 58, 59, 60, 62, 63, 64

• Analysis: Build a 95% confidence interval for the mean difference in grades.
boys <- c(39, 42, 47, 50, 52, 52, 54, 55, 55, 56, 56, 56, 58, 60, 62)
girls <- c(44, 45, 48, 50, 51, 52, 53, 53, 57, 58, 59, 60, 62, 63, 64)
y_b.bar <- mean(boys)
y_g.bar <- mean(girls)
s_b.sq <- var(boys)
s_g.sq <- var(girls)
n_b <- length(boys)
n_g <- length(girls)
df <- n_g + n_b - 2
t <- qt(0.975, df)
(y_b.bar - y_g.bar) + c(-1, 1) * t * sqrt(s_b.sq / n_g + s_g.sq / n_b)

The 95% confidence interval for the mean difference grade is (−6.41, 3.08).

EXAMPLE 1.15.5: Model 4

• Problem: In October there will be a federal election. Prior to the election pollsters will gauge the
popularity of the candidates. One party of interest will be the Liberals.

• Plan: They ask 430 randomly selected people whether they would vote liberal.
• Data: 267 people would be willing to vote Liberal.
• Analysis: Build a 95% confidence interval for the proportion of people willing to vote Liberal.
n <- 430
voters <- 267
p.hat <- 267 / 430
z <- qnorm(0.975)
p.hat + c(-1, 1) * z * sqrt((p.hat * (1 - p.hat)) / n)

• 𝑛 = 430
• ̂𝑝 = 267/430
• 𝑧∗ = 1.96

The 95% confidence interval for the proportion of people willing to vote Liberal is (0.575, 0.667).

1.16 Lecture 16.00: HT
(1) Define the hypothesis

Table 1.2: Hypotheses

𝐻0 𝐻𝑎

𝜃 = 𝜃0 𝜃 ≠ 𝜃0
𝜃 ≥ 𝜃0 𝜃 < 𝜃0
𝜃 ≤ 𝜃0 𝜃 > 𝜃0
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(2) Discrepancy

𝑑 = EST − 𝐻0 value
SE

=
̂𝜃 − 𝜃0

√V( ̃𝜃)

(3) Given ̃𝜃 ∼ 𝒩(𝜃,V( ̃𝜃)) where 𝐷 ∼ 𝒩(0, 1) when 𝜎 is known or 𝐷 ∼ 𝑡(𝑛 − 𝑞 + 𝑐) when 𝜎 is known.

(4) 𝑝-value

Table 1.3: 𝑝-value
𝐻𝑎 𝑝-value

𝜃 ≠ 𝜃0 2P(𝐷 > |𝑑|)
𝜃 < 𝜃0 P(𝐷 < 𝑑)
𝜃 > 𝜃0 P(𝐷 > 𝑑)

(5) Conclusion

Table 1.4: Guidelines for interpreting 𝑝-values
𝑝-value Interpretation

𝑝 > 0.1 No evidence to reject 𝐻0.
0.05 < 𝑝 ≤ 0.10 Weak evidence against 𝐻0.
0.01 < 𝑝 < 0.05 Evidence against 𝐻0.

𝑝 < 0.01 Tons of evidence against 𝐻0.

1.17 Lecture 17.00: HT Examples

EXAMPLE 1.17.1

We grow willow trees from cuttings. We grow these cuttings from 6 willow trees in two soils: high and
low acidity. We assign two cuttings from each tree to the two levels of acidity. After 1 year the height,
we measure the cuttings in centimetres.

Cutting 1 2 3 4 5 6

High 11 19 32 12 7 14
Low 17 21 14 11 18 9

Is the growth in high and low acidity equal? Use an appropriate hypothesis test. Assume group variances
are the same.
Solution.

• 𝐻0: 𝜇𝑑 = 0
• 𝐻𝑎: 𝜇𝑑 ≠ 0
high <- c(11, 19, 32, 12, 7, 14)
low <- c(17, 21 , 14 , 11 , 18 , 9)
diff <- high - low
y_d.bar <- mean(diff)
s_d <- sd(diff)
n_d <- length(diff)
df <- length(diff) - 1
d <- (y_d.bar - 0) / (s_d / sqrt(n_d))
pval <- 2 * (1 - pt(d, df))

• ̄𝑦𝑑+ = 0.83
• 𝑠𝑑 = 10.07
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• 𝑑 = 0.2
• 𝑝 = 2P(𝐷 > |𝑑|) = 2[1 − P(𝐷 ≤ 0.2)] = 2 * (1 - pt(d, df)) ≈ 0.84.

We obtain a 𝑝-value of 0.84. There is no evidence to reject 𝐻0. In other words, we can argue in favour
of saying that they have the same growth in different acidic soils.

EXAMPLE 1.17.2

We plant a random assortment of pumpkin seeds and fertilize them using two types of plant feed: coke,
and water. After 4 weeks the plant heights, in cm, were measured.

• Coke: 8, 7, 18, 42, 21
• Water: 5, 11, 21, 9, 14

Is coke a better fertilizer for pumpkin’s than water? Use an appropriate hypothesis test. Assume group
variances are the same.

• 𝐻0: 𝜇𝑐 = 𝜇𝑤
• 𝐻𝑎: 𝜇𝑐 − 𝜇𝑤 > 0
coke <- c(8, 7, 18, 42, 21)
water <- c(5, 11, 21, 9, 14)
y_c.bar <- mean(coke)
y_w.bar <- mean(water)
s_c.sq <- var(coke)
s_w.sq <- var(water)
n_c <- length(coke)
n_w <- length(water)
s_p.sq <-
((n_w - 1) * s_w.sq + (n_c - 1) * s_c.sq) / (n_w + n_c - 2)
df <- n_c + n_w - 2
t <- qt(0.975, df)
d <- (y_c.bar - y_w.bar) / sqrt(s_p.sq * (1 / n_w + 1 / n_c))
pval <- 1 - pt(d, df)

• ̄𝑦𝑐+ = 19.2
• ̄𝑦𝑤+ = 12
• 𝑛𝑤 = 𝑛𝑐 = 5
• 𝑠2

𝑐 = 199.7
• 𝑠2

𝑤 = 36
• 𝑠2

𝑝 = 117.85

• 𝑑 =
̄𝑦𝑐+ − ̄𝑦𝑑+ − 0

𝑠𝑝√ 1
𝑛𝑤

+ 1
𝑛𝑐

= 1.049

• 𝑝 = P(𝐷 > 𝑑) = 1 − P(𝐷 ≤ 1.049) = 1 - pt(d, df) ≈ 0.162.
There is no evidence to reject 𝐻0. Therefore, coke is not a better fertilizer than water.
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Assignment 2

2.1 Lecture 18.00: Model 5, Estimates

DEFINITION 2.1.1: Completely randomized design, Model 5

The completely randomized design (CRD) is defined as

𝑌𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝑅𝑖𝑗 (𝑅𝑖𝑗 ∼ 𝒩(0, 𝜎2))

for 𝑖 = 1, 2, … , 𝑡 (no. of treatments), 𝑗 = 1, 2, … , 𝑟 (no. of replicates/treatment). The number of units is
𝑡𝑟. In this course, this is Model 5.

• 𝜇 is the study population mean
• 𝜇 + 𝜏𝑖 is the group mean
• 𝜏𝑖 is the treatment effect of group 𝑖
• 𝑅𝑖𝑗 is the distribution of values about the deterministic part of the model.

Constraint: 𝜏1 + 𝜏2 + ⋯ + 𝜏𝑡 = 0

EXAMPLE 2.1.2

Group 1 Group 2

60 70
65 75
70 80

• ̂𝜇 = 60+65+70+70+75+80
6 = 70

• ̂𝜇 + ̂𝜏1 = 60+65+70
3 = 65

• ̂𝜇 + ̂𝜏2 = 70+75+80
3 = 75

• ̂𝜏1 = −5
• ̂𝜏2 = 5

Note that ̂𝜏1 + ̂𝜏2 = 5.

EXAMPLE 2.1.3: LS for CRD

𝑊 = ∑
𝑖𝑗

𝑟2
𝑖𝑗 + 𝜆(𝜏1 + ⋯ + 𝜏𝑡) = ∑

𝑖𝑗
(𝑦𝑖𝑗 − 𝜇 − 𝜏𝑖)2 + 𝜆(𝜏1 + 𝜏2 + ⋯ + 𝜏𝑡)

Find 𝜕𝑊
𝜕𝜇 , 𝜕𝑊

𝜕𝜏1
, … , 𝜕𝑊

𝜕𝜏𝑡
, and 𝜕𝑊

𝜕𝜆 and set to zero to solve.

̂𝜇 = ̄𝑦++

19
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̂𝜏𝑖 = ̄𝑦𝑖+ − ̄𝑦++

𝜎̂2 = 𝑊
𝑛 − 𝑞 + 𝑐

= 𝑊
(𝑡𝑟) − (𝑡 + 1) + (1)

• 𝑛 = 𝑡𝑟 since that is the number of parameters we have.
• 𝑞 = 𝑡 + 1 since we have one 𝜇 and 𝑡 𝜏’s.
• 𝑐 = 1 since we have one constraint 𝜏1 + ⋯ + 𝜏𝑡 = 0.

2.2 Lecture 19.00: Model 5, Estimators
Suppose we have 𝑖 = 1, 2 and 𝑗 = 1, 2, … , 𝑟. The number of units is 2𝑟. For the CRD model, the estimator
is

̃𝜇 = ̄𝑌++

Let’s find the mean and variance of ̃𝜇 for 𝑖 = 1, 2 and 𝑗 = 1, 2, … , 𝑟.

E[ ̄𝑌++] = E⎡⎢
⎣

∑2
𝑖=1 ∑𝑟

𝑗=1 𝑌𝑖𝑗

2𝑟
⎤⎥
⎦

= E⎡⎢
⎣

∑2
𝑖=1 ∑𝑟

𝑗=1(𝜇 + 𝜏𝑖 + 𝑅𝑖𝑗)
2𝑟

⎤⎥
⎦

=
∑2

𝑖=1 ∑𝑟
𝑗=1 E[𝜇] + E[𝜏𝑖] + E[𝑅𝑖𝑗]

2𝑟

=
∑2

𝑖=1 ∑𝑟
𝑗=1 𝜇 + 𝜏𝑖

2𝑟

=
2𝑟𝜇 + ∑𝑟

𝑗=1(𝜏1 + 𝜏2)
2𝑟

= 𝜇

Since E[ ̃𝜇] = 𝜇 we have an unbiased estimator.

V( ̄𝑌++) = V⎛⎜
⎝

∑2
𝑖=1 ∑𝑟

𝑗=1 𝑌𝑖𝑗

2𝑟
⎞⎟
⎠

=
∑2

𝑖=1 ∑𝑟
𝑗=1 V(𝑌𝑖𝑗)

(2𝑟)2 = 2𝑟𝜎2

(2𝑟)2 = 𝜎2

2𝑟

where the second equality used independence.

2.3 Lecture 20.00: Model 5, Estimators 2
An estimator for CRD is

̃𝜏1 = ̄𝑌1+ − ̄𝑌++

Let’s find the mean and variance of ̃𝜏1 for 𝑖 = 1, 2 and 𝑗 = 1, 2, … , 𝑟.

E[ ̃𝜏1] = E[ ̄𝑌1+ − ̄𝑌++] = E[ ̄𝑌1+] − 𝜇 = E[
∑𝑟

𝑖=1 𝑌1𝑗

𝑟
] − 𝜇 =

∑𝑟
𝑖=1(𝜇 + 𝜏1)

𝑟
− 𝜇 = 𝑟𝜇 + 𝑟𝜏1

𝑟
− 𝜇 = 𝜏1
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Working with the variance is slightly tricky.

V( ̃𝜏1) = V( ̄𝑌1+ − ̄𝑌++)

= V( ̄𝑌1+ − (
̄𝑌1+ + ̄𝑌2+

2
))

= V(1
2

̄𝑌1+ − 1
2

̄𝑌2+)

= 1
4
V( ̄𝑌1+) + 1

4
V( ̄𝑌2+) independence

= 𝜎2

4𝑟
+ 𝜎2

4𝑟

= 𝜎2

2𝑟

The confidence interval for 𝜏1 is given by

𝜏1 ∶ ̂𝜏1 ± 𝑐√𝜎̂2

2𝑟
(𝑐 ∼ 𝑡(𝑛 − 𝑞 + 𝑐))

and the discrepancy is (obviously) given by

𝑑 = ̂𝜏1 − 𝜏0

√𝜎̂2

2𝑟

(𝑐 ∼ 𝑡(𝑛 − 𝑞 + 𝑐))

The confidence interval for 𝜇 is given by

𝜇 ∶ ̂𝜇 ± 𝑐√𝜎̂2

2𝑟
(𝑐 ∼ 𝑡(𝑛 − 𝑞 + 𝑐))
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Assignment 3

3.1 Lecture 21.00: Model 5, Example 1
A study of intoxication measured two groups of students, one of which was drunk while the other was not
as they drove a computer-simulated driving course with a max speed limit of 50 km/h. Of interest was the
maximum speed of an individual doing the computer-simulated driving course. Group 1 was intoxicated, while
Group 2 was not.

Is there a difference in speed between those that drive while intoxicated versus those
that do not?
# Data frames
grp1 <- c(50, 53, 52, 58)
grp2 <- c(62, 55, 58, 60)
# Must run to get same results as textbook
options(contrasts = c("contr.sum", "contr.poly"))
Y <- c(grp1, grp2)
# Makes a discrete variable
x <- as.factor(c(rep(1, 4), rep(2, 4)))
# Builds the model
model <- lm(Y ~ x)
# Displays the output
summary(model)

##
## Call:
## lm(formula = Y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.75 -1.75 -0.50 1.75 4.75
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 56.000 1.132 49.473 4.57e-09 ***
## x1 -2.750 1.132 -2.429 0.0512 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

22
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## Residual standard error: 3.202 on 6 degrees of freedom
## Multiple R-squared: 0.4959,Adjusted R-squared: 0.4119
## F-statistic: 5.902 on 1 and 6 DF, p-value: 0.0512

(1) Residuals: Helps test our residuals.

(2) Coefficients: ̂𝜇 = 56, ̂𝜏1 = −2.75, ̂𝜏2 = 2.75.

(3) Residual standard error: 𝜎̂ = 3.202 on 6 degrees of freedom.

(4) Coefficients (Error to P(>|t|)): This line tests 𝐻0: 𝜇 = 0 versus 𝐻𝑎: 𝜇 ≠ 0

𝑑 = 56 − 0
1.132

= 49.473

𝑝-value = 2P(𝐷 > 49.473) = 4.57 × 10−9

We have tons of evidence to reject 𝐻0.

(5) 𝐻0: 𝜏1 = 0 versus 𝐻𝑎: 𝜏1 ≠ 0

𝑑 = −2.75 − 0
1.132

= −2.429

𝑝-value = 2P(𝐷 > |−2.429|) = 2(1 − P(𝐷 ≤ 2.429)) = 0.0512

There is evidence to reject 𝐻0.

What is the treatment effect for being inebriated?

̂𝜏1 = −2.75.

Is there a difference between the treatment effect of group 1 and 2? Use a 95% CI.

𝜃 = ave of grp1 − ave of grp2 = (𝜇 + 𝜏1) − (𝜇 + 𝜏2) = 𝜏1 − 𝜏2

Estimator: ̃𝜃 = ̃𝜏1 − ̃𝜏2 and is normal by Gauss.

E[ ̃𝜃] = E[ ̃𝜏1 − ̃𝜏2] = E[ ̃𝜏1] − E[ ̃𝜏2] = 𝜏1 − 𝜏2

since unbiased.

V( ̃𝜃) = V( ̄𝑌1+ − ̄𝑌++ − ( ̄𝑌2+ − ̄𝑌++)) = V( ̄𝑌1+ − ̄𝑌2+) = V( ̄𝑌1+) + V( ̄𝑌2+) = 𝜎2

4
+ 𝜎2

4
= 𝜎2

2

CI for 𝜃:

𝜃 ∶ ̂𝜃 ± 𝑐 SE = ̂𝜏1 − ̂𝜏2 ± 𝑐√𝜎̂2

2
(𝑐 ∼ 𝑡(𝑛 − 𝑞 + 𝑐) = 𝑡(8 − 2 + 1) = 𝑡(6))

In our case,

𝜃 ∶ (−2.75 − 2.75) ± 2.447√3.2022

2
= (−11.04, 0.04)

0 is in the interval, so we conclude that there is no difference between the treatment effect of group 1 and 2.
In R, we could do
-2.75 - 2.75 + c(-1, 1) * qt(0.975, 6) * sqrt(summary(model)$sigma^2/2)

## [1] -11.0394323 0.0394323

To obtain our CI 𝜃 ∶ (−11.039, 0.039).
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Is there a difference between the treatment effect of group 1 and 2? Use an HT.

𝐻0: 𝜏1 = 𝜏2 versus 𝐻𝑎: 𝜏1 ≠ 𝜏2.

𝑑 = ̂𝜏1 − ̂𝜏2 − 𝜏0

𝜎̂/
√

2
= (−2.75 − 2.75) − 0

3.202/
√

2
= −2.489

𝑝 = 2P(𝐷 ≥ |𝑑|) = (0.05, 0.10)

We have some evidence to reject 𝐻0. In R, we could do
d <- (-2.75 - 2.75)/(summary(model)$sigma/sqrt(2))
d

## [1] -2.429494

2 * (1 - pt(abs(d), 6))

## [1] 0.05119768

To obtain 𝑑 = −2.429 and 𝑝-value = 0.051. There is some difference between the treatment effect of group 1
and 2.

3.2 Lecture 22.00: Model 5, Example 1 Cont.
We want to check our model assumptions of 𝑅𝑗 ∼ 𝒩(0, 𝜎2) independent. Four things to check:

• E[𝑅𝑗] = 0 (zero mean)

• V(𝑅𝑗) = 𝜎2 (constant variance)

• Normality

• Independence

To check these, we can

• plot residuals versus fitted values to check for both mean and variance assumption.

plot(model$residuals)

• Q-Q plot to check for normality (straight line is normal).

qqnorm(model$residuals)

• residuals plot to check for independence assumption.

plot(model$fitted.values, model$residuals)

Example
All the diagnostics for this example seem good.
# Data frames
grp1 <- c(50, 53, 52, 58)
grp2 <- c(62, 55, 58, 60)
# Must run to get same results as textbook
options(contrasts = c("contr.sum", "contr.poly"))
Y <- c(grp1, grp2)
# Makes a discrete variable
x <- as.factor(c(rep(1, 4), rep(2, 4)))
# Builds the model
model <- lm(Y ~ x)
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# Residuals
model$residuals

## 1 2 3 4 5 6 7 8
## -3.25 -0.25 -1.25 4.75 3.25 -3.75 -0.75 1.25

qqnorm(model$residuals)
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plot(model$fitted.values, model$residuals)
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3.3 Lecture 23.00: Model 5, Example 2
Suppose professors are coordinating 4 sections of the same course in a term. We want to look at the average
mark for each section on the midterm. The treatment is the “instructor.”
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options(contrasts = c("contr.sum", "contr.poly"))
Marks1 = c(55, 92, 48, 57, 66, 72)
Marks2 = c(62, 95, 84, 83, 66, 75)
Marks3 = c(89, 92, 94, 99, 87, 67)
Marks4 = c(25, 35, 71, 42, 44, 30)
Y = c(Marks1, Marks2, Marks3, Marks4)
x = as.factor(c(rep(1, 6), rep(2, 6), rep(3, 6), rep(4, 6)))
model = lm(Y ~ x)
summary(model)

##
## Call:
## lm(formula = Y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -21.0000 -10.2917 0.9167 6.1250 29.8333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 67.917 2.861 23.741 4e-16 ***
## x1 -2.917 4.955 -0.589 0.562699
## x2 9.583 4.955 1.934 0.067381 .
## x3 20.083 4.955 4.053 0.000621 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.01 on 20 degrees of freedom
## Multiple R-squared: 0.6506,Adjusted R-squared: 0.5982
## F-statistic: 12.41 on 3 and 20 DF, p-value: 8.281e-05

Note that

• ̂𝜏4 = −( ̂𝜏1 + ̂𝜏2 + ̂𝜏3) = −26.749.

• Degrees of freedom = 𝑛 − 𝑞 + 𝑐 = (24) − (4 + 1) + 1 = 20.

Is there a difference between the treatment effect of group 1 and 2? Use a 95% CI.
̃𝜃 = ̃𝜏1 + ̃𝜏2 and by Gauss this is normal.

E[ ̃𝜃] = E[ ̃𝜏1 − ̃𝜏2] = 𝜏1 + 𝜏2

V( ̃𝜃) = V( ̃𝜏1 − ̃𝜏2) = V( ̄𝑌1+ − ̄𝑌2+) = V( ̄𝑌1+) + V( ̄𝑌2+) = 𝜎2

6
+ 𝜎2

6
= 𝜎2

3
The 95% confidence interval for 𝜃 is

̂𝜏1 − ̂𝜏2 ± 𝑐 𝜎̂√
3

= −2.917 − 9.583 ± 2.09(14.01)√
3

= (−29.37, 4.37) (𝑐 ∼ 𝑡(20))

In R, we could do
tau.1 <- summary(model)$coefficients[2]
tau.2 <- summary(model)$coefficients[3]
tau.3 <- summary(model)$coefficients[4]
tau.4 <- -1 * (tau.1 + tau.2 + tau.3)
tau.1 - tau.2 + c(-1, 1) * qt(0.975, 20) * summary(model)$sigma/sqrt(3)
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## [1] -29.378554 4.378554

To get at 95% confidence interval 𝜃: (−29.38, 4.38). Since 0 ∈ (−29.38, 4.38), there is not a difference between
the treatment effect of group 1 and 2.

Groups 2 and 3 were taught by the same instructor. Groups 1 and 4 are taught by
another instructor. Is there a difference between the average treatment effect of
instructor 1 to instructor 2? Use an HT.

̃𝜃 = ̃𝜏1 + ̃𝜏4
2

− ( ̃𝜏2 + ̃𝜏3
2

)

E[ ̃𝜃] = 𝜏1 + 𝜏4
2

− (𝜏2 + 𝜏3
2

)

V( ̃𝜃) = V( ̃𝜏1 + ̃𝜏4
2

− ( ̃𝜏2 + ̃𝜏3
2

))

= V(
̄𝑌1+ + ̄𝑌4+

2
− (

̄𝑌2+ + ̄𝑌3+
2

))

= 1
4
V(𝑌1+) + ⋯ + 1

4
V(𝑌4+)

= 𝜎2

4(6)
+ ⋯ + 𝜎2

4(6)

= 𝜎2

6

𝐻0: 𝜃 = 0 versus 𝐻𝑎: 𝜃 ≠ 0.

𝑑 =
̂𝜃 − 0

𝜎̂/
√

6
= −5.19 (𝐷 ∼ 𝑡(20))

𝑝 = 2P(𝐷 > |−5.19|) = (0, 0.001)

We have tons of evidence to reject 𝐻0 in favour of the instructors having a different effect. In R, we could do

theta <- ((tau.1 + tau.4)/2) - ((tau.2 + tau.3)/2)
d <- (theta - 0)/(summary(model)$sigma/sqrt(6))
d

## [1] -5.185077

2 * (1 - pt(abs(d), 20))

## [1] 4.498007e-05

To obtain a 𝑝-value of 4.498007 × 10−5.

EXAMPLE 3.3.1

An example of a contrast is

𝜃 = 𝜏1 + 𝜏4
2

− (𝜏2 + 𝜏3)
2

DEFINITION 3.3.2: Contrast

A contrast has the form
𝑎1𝜏1 + 𝑎2𝜏2 + ⋯ + 𝑎𝑛𝜏𝑛
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where ∑𝑛
𝑖=1 𝑎𝑖 = 0.

3.4 Lecture 24.00: ANOVA
Analysis of Variance

𝑌𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝑅𝑖𝑗 (𝑅𝑖𝑗 ∼ 𝒩(0, 𝜎2))

Recall:

𝑊 = ∑
𝑖𝑗

𝑟2
𝑖𝑗

= ∑
𝑖𝑗

(𝑦𝑖𝑗 − ̂𝜇 − ̂𝜏𝑖)2

= ∑
𝑖𝑗

(𝑦𝑖𝑗 − ̂𝜇)2 + (−𝑟) ∑
𝑖

( ̄𝑦𝑖+ − ̄𝑦++)2

Rearranging
∑

𝑖𝑗
(𝑦𝑖𝑗 − ̄𝑦++)2

⎵⎵⎵⎵⎵⎵
SS(Tot)

= 𝑟 ∑
𝑖

( ̄𝑦𝑖+ − ̄𝑦++)2

⎵⎵⎵⎵⎵⎵⎵
SS(Trt)

+ ∑
𝑖𝑗

(𝑦𝑖𝑗 − ̂𝜇 − ̂𝜏𝑖)2

⎵⎵⎵⎵⎵⎵⎵
SS(Res)

SS(Tot) = SS(Trt) + SS(Res)

SS(Tot)

• Represents a measure of total variability in your data

• 𝑠2 = SS(Tot)
𝑛 − 1

= MS(Tot)

• df = 𝑛 − 1

• You get this by fitting Model 1; 𝑌𝑖 = 𝜇 + 𝑅𝑖 where 𝑅𝑖 ∼ 𝒩(0, 𝜎2)

• Recall 𝜎̂ = 𝑠 in Model 1

SS(Res)

• The variability left over after you fit the model (unexplained)

• Synonymous with 𝜎̂2

• 𝜎̂2 = 𝑊
𝑛 − 𝑞 + 𝑐

= SS(Res)
dfRes

= MS(Res)

• df = 𝑛 − 𝑞 + 𝑐

SS(Trt)

• Due to 𝜏 component

• MS(Trt) = SS(Trt)
dfTrt

• dfTrt = 𝑡 − 1

• dfTot = dfTrt + dfRes

• Variability explained by your model
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SS(Tot) = SS(Trt) = SS(Res)

We want SS(Trt) ≫ SS(Res). We compare MS(Trt) to MS(Res) using the ratio

𝐹 = MS(Trt)
MS(Res)

3.5 Lecture 25.00: F Test
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Figure 3.1: 𝐹 distribution

THEOREM 3.5.1

Let 𝑋 ∼ 𝜒2(𝑚) and 𝑌 ∼ 𝜒2(𝑛), then
𝑋/𝑚
𝑌 /𝑛

∼ 𝐹(𝑚, 𝑛)

THEOREM 3.5.2

Let 𝑋 ∼ 𝐹(𝑚, 𝑛) and 𝑌 ∼ 1/𝑋, then
𝑌 ∼ 𝐹(𝑛, 𝑚)

EXAMPLE 3.5.3

𝛼 = P(𝐹(20, 4) > 4) = (0.05, 0.1) since
𝛼 0.1 0.05 0.01

critical value 3.84 5.80 14.0
In R, we can directly calculate 𝛼 with 1-pf(4,20,4)=0.094.

̃𝐹 =
̃MS(Trt)
̃MS(Res)
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Now, ̃MS(Res) = 𝜎̃2. We know
𝜎̃2dfRes

𝜎2 ∼ 𝜒2(dfRes) (3.1)

Similarly,
̃MS(Trt)dfTrt

𝜎2 ∼ 𝜒2(dfTrt) (3.2)

Divide 3.2 by 3.1 to get
̃MS(Trt)
̃MS(Res)

∼ 𝐹(𝑛, 𝑑)

where 𝑛 = dfTrt and 𝑑 = dfRes.

When is 𝐹 large?

E[ ̃𝐹 ] = E[
̃MS(Trt)
̃MS(Res)

]≈ E[ ̃MS(Trt)]
E[ ̃MS(Res)]

=
𝜎2 + 𝑟

∑𝑡
𝑖=1 𝜏2

𝑖

𝑡 − 1
𝜎2

E[ ̃𝐹 ] = 1 + 𝑟
𝜎2

∑𝑡
𝑖=1 𝜏2

𝑖

𝑡 − 1
If 𝜏1 = 𝜏2 = ⋯ = 𝜏𝑡 = 0, then E[ ̃𝐹 ] = 1. However, if even one 𝜏 is not zero, then E[ ̃𝐹 ] > 1.

𝐹 Test
(1) 𝐻0: 𝜏1 = 𝜏2 = ⋯ = 𝜏𝑡 = 0 versus 𝐻𝑎: at least one 𝜏 is not zero.

(2) 𝑑 = MS(Trt)
MS(Res)

where 𝐷 ∼ 𝐹(dfTrt,dfRes)

(3) 𝑝-value = P(𝐷 > 𝑑)

(4) Conclusion.

3.6 Lecture 26.00: F Test, Example
See Section 3.3 for the data.
anova(model)

## Analysis of Variance Table
##
## Response: Y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 3 7315.5 2438.50 12.415 8.281e-05 ***
## Residuals 20 3928.3 196.42
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• 𝐻0: 𝜏1 = 𝜏2 = 𝜏3 = 𝜏4 = 0

• 𝐻𝑎: At least one 𝜏 is not zero

𝑑 = MS(Trt)
MS(Res)

= SS(Trt)/dfTrt
SS(Res)/dfRes

= 7315.5/3
3928.3/20

= 12.415
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Note that 𝐷 ∼ 𝐹(3, 20), so
𝑝 = P(𝐷 > 12.415) = 8.21 × 10−5

We have tons of evidence against 𝐻0, so one of our treatment effects is not zero.



Chapter 4

Assignment 4

4.1 Lecture 27.00: Model 6
DEFINITION 4.1.1: Unbalanced CRD, Model 6

The unbalanced completely randomized design is

𝑌𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝑅𝑖𝑗 (𝑅𝑖𝑗 ∼ 𝒩(0, 𝜎2))

for 𝑖 = 1, 2, … , 𝑡 (no. of treatments), 𝑗 = 1, 2, … , 𝑟𝑖 (no. of replicates/treatment). In this course, this is
Model 6.
Constraint: ∑𝑡

𝑖=1 𝑟𝑖𝜏𝑖 = 0.

EXAMPLE 4.1.2: LS for Model 6

The LS for Model 6 is

𝑊 = ∑ 𝑟2
𝑖𝑗 + 𝜆(

𝑡
∑
𝑖=1

𝑟𝑖𝜏𝑖)

and results in
̂𝜇 = ̄𝑦++

̂𝜏𝑖 = ̄𝑦𝑖+ − ̄𝑦++

𝜎̂2 = 𝑊
(𝑟1 + 𝑟2 + ⋯ + 𝑟𝑡) − (𝑡 + 1) + 1

4.1.1 Unbalanced CRD Example
Refer to Section 3.1, we remove the last element of group 2.
grp1 = c(50, 53, 52, 58)
grp2 = c(62, 55, 58)
Y = c(grp1, grp2)
x = as.factor(c(rep(1, 4), rep(2, 3)))
# Group Averages
grp_av = tapply(Y, x, mean, na.rm = T)
mu = mean(Y)
# Treatment Effects
tau1 = (grp_av - mean(Y))[1]

33
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tau2 = (grp_av - mean(Y))[2]
# Estimated Sigma
sigma = summary(lm(Y ~ x))$sigma
# Values
sigma

## [1] 3.447221

tau1

## 1
## -2.178571

tau2

## 2
## 2.904762

mu

## [1] 55.42857

We obtain

• 𝜎̂ = 3.447221

• ̂𝜏1 = −2.178571

• ̂𝜏2 = 2.904762

• ̂𝜇 = 55.42857

• Obviously, 4( ̂𝜏1) + 3( ̂𝜏2) = 0

What is the treatment effect for being inebriated?

̂𝜏1 = −2.18

Is there a difference between the treatment effect of group 1 and 2? Use a 95% CI.

𝜃 = 𝜏1 − 𝜏2 ⟹ ̃𝜃 = ̃𝜏1 − ̃𝜏2.
E[ ̃𝜃] = 𝜏1 − 𝜏2

V( ̃𝜃) = V( ̄𝑌1+ − ̄𝑌2+) = 𝜎2

4
+ 𝜎2

3
= 7𝜎2

12
Confidence interval:

̂𝜏1 − ̂𝜏2 ± 𝑐√7𝜎̂2

12
= (−11.85, 1.68)

In R,
tau1 - tau2 + c(-1, 1) * qt(0.975, 5) * sqrt((7 * sigma^2)/12)

## [1] -11.851312 1.684645

Is there a difference between the treatment effect of group 1 and 2? Use a HT.

anova(lm(Y ~ x))

## Analysis of Variance Table
##
## Response: Y
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## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 44.298 44.298 3.7277 0.1114
## Residuals 5 59.417 11.883

No evidence against 𝐻0: 𝜏1 = ⋯ = 𝜏𝑡 = 0, so this model is not great.

4.2 Lecture 28.00: Model 7
DEFINITION 4.2.1: Randomized block design, Model 7

The randomized block design (RBD) is defined as

𝑌𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + 𝑅𝑖𝑗 (𝑅𝑖𝑗 ∼ 𝒩(0, 𝜎2))

where 𝛽𝑗 is the 𝑗th block (BIK) effect. Note that
• 𝑖 = 1, 2, … , 𝑡
• 𝑗 = 1, 2, … , 𝑟
• ∑𝑡

𝑖=1 𝜏𝑖 = 0
• ∑𝑟

𝑗=1 𝛽𝑗 = 0

EXAMPLE 4.2.2: LS for Model 7

The LS for Model 7 is

𝑊 = ∑
𝑖𝑗

𝑟𝑖𝑗 + 𝜆1(
𝑡

∑
𝑖=1

𝜏𝑖) + 𝜆2(
𝑟

∑
𝑗=1

𝛽𝑗)

Solving
̂𝜇 = ̄𝑦++

̂𝜏𝑖 = ̄𝑦𝑖+ − ̄𝑦++

̂𝛽𝑗 = ̄𝑦+𝑗 − ̄𝑦++

𝜎̂2 = 𝑊
(𝑟𝑡) − (𝑡 + 𝑟 + 1) + 2

4.3 Lecture 29.00: Model 7, Example
We grow willow trees from cuttings. We grow these cuttings from 6 willow trees in two soils: high and low
acidity. We assign two cuttings from each tree to the two levels of acidity. After 1 year the height, we measure
the cuttings in centimetres.

Is the growth in high and low acidity equal? Use an appropriate hypothesis test.
# Step 1 – Change the directory In R, select FILE, CHANGE
# DIR select the folder your data is located in.
# Step 2 – use read.table
Data = read.table("blocked.csv", sep = ",", header = T)
# Step 3 – Have a look at the data:
Data

## Block Treatment Value
## 1 1 High 16
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## 2 2 High 19
## 3 3 High 32
## 4 4 High 12
## 5 5 High 7
## 6 6 High 14
## 7 1 Low 17
## 8 2 Low 21
## 9 3 Low 33
## 10 4 Low 11
## 11 5 Low 8
## 12 6 Low 12

# To build a model we type:
options(contrasts = c("contr.sum", "contr.poly"))
attach(Data)
Treatment = as.factor(Treatment)
Block = as.factor(Block)
Model = lm(Value ~ Treatment + Block)
# To look at the output, we type:
summary(Model)

##
## Call:
## lm(formula = Value ~ Treatment + Block)
##
## Residuals:
## 1 2 3 4 5 6 7 8 9 10
## -0.3333 -0.8333 -0.3333 0.6667 -0.3333 1.1667 0.3333 0.8333 0.3333 -0.6667
## 11 12
## 0.3333 -1.1667
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.8333 0.3073 54.775 3.84e-08 ***
## Treatment1 -0.1667 0.3073 -0.542 0.610881
## Block1 -0.3333 0.6872 -0.485 0.648131
## Block2 3.1667 0.6872 4.608 0.005797 **
## Block3 15.6667 0.6872 22.798 3.02e-06 ***
## Block4 -5.3333 0.6872 -7.761 0.000568 ***
## Block5 -9.3333 0.6872 -13.582 3.88e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.065 on 5 degrees of freedom
## Multiple R-squared: 0.9927,Adjusted R-squared: 0.984
## F-statistic: 113.5 on 6 and 5 DF, p-value: 3.532e-05

anova(Model)

## Analysis of Variance Table
##
## Response: Value
## Df Sum Sq Mean Sq F value Pr(>F)
## Treatment 1 0.33 0.333 0.2941 0.6109
## Block 5 771.67 154.333 136.1765 2.446e-05 ***
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## Residuals 5 5.67 1.133
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• 𝜎̂ = 1.065 on 𝑛 − 𝑞 + 𝑐 degrees of freedom. In this case, we have 6 blocks, 2 treatments, so 12 total
values. One 𝜇 and two constraints. So 12 − 6 − 2 − 1 + 2 = 5 degrees of freedom.

• ̃𝜃 = ̃𝜏1 − ̃𝜏2.

• E[ ̃𝜃] = 𝜏1 − 𝜏2.

• V( ̃𝜃) = V( ̄𝑌1+) − V( ̄𝑌2+) = 𝜎2

6
+ 𝜎2

6
= 𝜎2

3
.

The confidence interval for the difference in treatments is:

̂𝜏1 − ̂𝜏2 ± 𝑐√𝜎̂2

3
= (−0.1667 − 0.1667) ± 2.571.065√

3
= (−1.91, 1.25)

Suppose we ran a CRD instead.
Model = lm(Value ~ Treatment)
summary(Model)

##
## Call:
## lm(formula = Value ~ Treatment)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.667 -5.250 -1.667 2.750 16.000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.8333 2.5451 6.614 5.97e-05 ***
## Treatment1 -0.1667 2.5451 -0.065 0.949
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.817 on 10 degrees of freedom
## Multiple R-squared: 0.0004286,Adjusted R-squared: -0.09953
## F-statistic: 0.004288 on 1 and 10 DF, p-value: 0.9491

anova(Model)

## Analysis of Variance Table
##
## Response: Value
## Df Sum Sq Mean Sq F value Pr(>F)
## Treatment 1 0.33 0.333 0.0043 0.9491
## Residuals 10 777.33 77.733

𝜎̂ has gone up since we are no longer accounting for the variability in the blocks.

̂𝜏1 − ̂𝜏2 ± 𝑐 𝜎̂√
3

= (−11.7, 11.02)

which is much wider than the RBD. The ANOVA table for the CRD are just the sum of the Block and Residuals
in the RBD. There was a benefit to using blocking. ANOVA gives us a simple test that we can use. In the RBD



CHAPTER 4. ASSIGNMENT 4 38

ANOVA table, on the Block line we are testing

𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽6 = 0

𝐻𝑎: At least one 𝛽𝑗 is not zero

𝑑 = MS(Block)
MS(Res)

= 154.333
1.133

= 136.1765

With 𝑝-value:
𝑝 = P(𝐷 > 136.1765) = 2.44 × 10−5

We have tons of evidence to reject 𝐻0 in favour of 𝐻𝑎. Since at least one 𝛽𝑗 is not zero, RBD is a better model
to use instead of CRD.
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Assignment 5

5.1 Lecture 30.00: Factorial Designs

EXAMPLE 5.1.1: Cancer

• Chemo (high, low).
• Radiation (high, low).

A treatment might be high chemo and low radiation.

In factorial design, we’re interested in the factorials individually as well as how they interact. Interaction
means that the effects of the factors differ when used alone differs from when they are used together.

EXAMPLE 5.1.2: Interaction

• Radiation: kills 1/4 of cancer cells
• Chemo: kills 1/4 of cancer cells
• Together: kills 5/6 cancer cells

DEFINITION 5.1.3: Factorial CRD, Model 8

𝑌𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖𝑗 + 𝑅𝑖𝑗𝑘 (𝑅𝑖𝑗𝑘 ∼ 𝒩(0, 𝜎2))

where
• 𝑖 = 1, 2, … , ℓ1 (no. of levels of factor 1)
• 𝑗 = 1, 2, … , ℓ2 (no. of levels of factor 2)
• 𝑘 = 1, 2, … , 𝑟

Constraint: ∑𝑖𝑗 𝜏𝑖𝑗 = 0

EXAMPLE 5.1.4: LS for Model 8

𝑊 = ∑
𝑖𝑗𝑘

𝑟2
𝑖𝑗𝑘 + 𝜆(∑

𝑖𝑗
𝜏𝑖𝑗)

Solving
̂𝜇 = ̄𝑦+++

̂𝜏𝑖𝑗 = ̄𝑦𝑖𝑗+ − ̄𝑦+++

39
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𝜎̂2 = 𝑊
(𝑟ℓ1ℓ2) − (ℓ1ℓ2 + 1) + 1

DEFINITION 5.1.5: Factorial RBD, Model 9

𝑌𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖𝑗 + 𝛽𝑘 + 𝑅𝑖𝑗𝑘 (𝑅𝑖𝑗𝑘 ∼ 𝒩(0, 𝜎2))

Constraints: ∑𝑖𝑗 𝜏𝑖𝑗 = 0 and ∑𝑘 𝛽𝑘 = 0

EXAMPLE 5.1.6: LS for Model 9

𝑊 = ∑
𝑖𝑗𝑘

𝑟2
𝑖𝑗𝑘 + 𝜆1 ∑

𝑖𝑗
𝜏𝑖𝑗 + 𝜆2 ∑

𝑘
𝛽𝑘

Solving
̂𝜇 = ̄𝑦+++

̂𝜏𝑖𝑗 = ̄𝑦𝑖𝑗+ − ̄𝑦+++

̂𝛽𝑘 = ̄𝑦++𝑘 − ̄𝑦+++

𝜎̂2 = 𝑊
(𝑟ℓ1ℓ2) − (ℓ1ℓ2 + 𝑟 + 1) + 2

5.2 Lecture 30.50: Factorial Designs, Example
An experiment was conducted by students at Ohio State to explore the nature of the relationship between a
person’s heart rate and the frequency at which that person stepped up and down on steps of various heights.
The response, the difference in heart rate, was measured in beats per minute. There were two different step
heights, coded as 0 and 1. There were two rates of stepping coded as 0 and 1. This resulted in four possible
height/frequency combinations — treatments. Each subject performed the activity for three minutes, and
were kept on pace by the beat of an electric metronome.
rm(list = ls())
options(contrasts = c("contr.sum", "contr.poly"))
data = read.table("stepping2.csv", header = T, sep = ",", as.is = T)
attach(data)
Y = HR - RestHR
Trt = 2 * Height + Frequency
Trt = as.factor(Trt)
Model = lm(Y ~ Trt)
summary(Model)

##
## Call:
## lm(formula = Y ~ Trt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.20 -5.10 -0.90 5.85 16.80
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.500 2.263 8.619 2.08e-07 ***
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Figure 5.1: Interaction Plot

## Trt1 -11.700 3.919 -2.986 0.00874 **
## Trt2 -0.900 3.919 -0.230 0.82126
## Trt3 3.900 3.919 0.995 0.33444
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.12 on 16 degrees of freedom
## Multiple R-squared: 0.411,Adjusted R-squared: 0.3006
## F-statistic: 3.722 on 3 and 16 DF, p-value: 0.03332

5.2.1 Determining Interaction (Method 1)
Group Average 0 1

0 19.5 − (11.7) 19.5 − 0.9
1 19.5 + 3.9 19.5 + 8.7

We can only do this if we have 2 levels with 2 factors. We end up creating a contrast. Figure 5.1 shows that
there is no interaction.
interaction.plot(Height, Frequency, Y)

5.2.2 Determining Interaction (Method 2)
• If 𝛥1 = 𝛥2, the lines are parallel; that is, there is no interaction.

• If 𝛥1 ≠ 𝛥2, the lines are not parallel; that is, there is interaction.
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𝛥1 − 𝛥2 = ( ̄𝑌11+ − ̄𝑌01+) − ( ̄𝑌10+ − ̄𝑌00+). Add tildes to get ̃𝜃 = ( ̃𝜏11 − ̃𝜏01) − ( ̃𝜏10 − ̃𝜏00)

E[ ̃𝜃] = 𝜏11 − 𝜏01 − 𝜏10 − 𝜏00

V( ̃𝜃) = 𝜎2

5
+ 𝜎2

5
+ 𝜎2

5
+ 𝜎2

5
= 4𝜎2

5
𝐻0: 𝜃 = 0 (no interaction) versus 𝐻𝑎: 𝜃 ≠ 0 (interaction)

𝑑 = ̂𝜏11 − ̂𝜏01 − ̂𝜏10 − ̂𝜏00

𝜎√ 4
5

= −0.66 (𝐷 ∼ 𝑡(20 − 4 − 1 + 1) = 𝑡(16))

𝑝 = 2P(𝐷 > 0.66) = (0.4, 0.6)

There is no evidence to reject 𝐻0. Therefore, there is no interaction.

There is actually a third way to determine interaction, the ANOVA table.

5.2.3 Determining Interaction (Method 3)
rm(list = ls())
options(contrasts = c("contr.sum", "contr.poly"))
data = read.table("stepping2.csv", header = T, sep = ",", as.is = T)
attach(data)
Y = HR - RestHR
Height = as.factor(Height)
Freq = as.factor(Frequency)
Model = lm(Y ~ Freq + Height + Freq * Height)
anova(Model)

## Analysis of Variance Table
##
## Response: Y
## Df Sum Sq Mean Sq F value Pr(>F)
## Freq 1 304.2 304.20 2.9714 0.10401
## Height 1 793.8 793.80 7.7538 0.01326 *
## Freq:Height 1 45.0 45.00 0.4396 0.51677
## Residuals 16 1638.0 102.37
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We calculate SS(Trt) with

SS(Freq) + SS(Height) + SS(Interaction) = SS(Trt)

In our case, SS(Trt) = 1143.0 on 3 degrees of freedom.

• 𝐻0: no interaction

• 𝐻𝑎: interaction

𝑑 = MS(Int)
MS(Res)

= 45
102.37

= 0.4396

With 𝑝-value,
𝑝 = 0.51667 (𝐷 ∼ 𝐹(1, 16))

𝑝 > 0.1, so there is no evidence to reject 𝐻0, so it appears there is no interaction.
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Assignment 6

6.1 Lecture 31.00: Sampling
Let

• 𝑈 be the frame (study population).

• 𝑈 = {1, 2, … , 𝑁}.

• 𝒮 be our sample. It has size 𝑛 ≤ 𝑁 and 𝒮 ⊂ 𝑈.

Also, let the sampling protocol refer the probability of selecting any particular sample.

• Define 𝜋𝑖𝑗 to be the inclusion probability for unit 𝑖 and 𝑗. (note: 𝜋𝑖𝑖 = 𝜋𝑖)

SRSWOR

• Simple Random Sampling without Replacement.

• 𝑈 = {1, 2, 3, 4} we select samples of size 𝑛 = 2.

• 𝒮1 = {1, 2}, 𝒮2 = {1, 3}, 𝒮3 = {1, 4}, 𝒮4 = {2, 3}, 𝒮5 = {2, 4}, 𝒮6 = {3, 4}

• What is the probability we select sample 1?

P(𝒮1) = 1
6

• What is the probability that unit 1 is in our sample? That is, what is 𝜋1? Well, 𝜋1 = 3/6 = 1/2.

Let the frame be {1, 2, … , 𝑁}. We select SRSWOR a sample of size 𝑛.

P(𝒮1) = 1
(𝑁

𝑛)

𝜋1 =
(𝑁−1

𝑛−1)
(𝑁

𝑛)
= 𝑛

𝑁

6.2 Lecture 32.00: Model 1 Revisited
𝑌𝑗 = 𝜇 + 𝑅𝑗 (𝑅𝑗 ∼ 𝒩(0, 𝜎2))

• Parameters: 𝜇, and 𝜎2

43
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• Estimates: ̂𝜇 = ̄𝑦+, and 𝜎̂2 = 𝑠2

• Estimators: ̃𝜇 = ̄𝑌+, and 𝜎̃2 = 𝑆2, where

̃𝜇 ∼ 𝒩(𝜇, 𝜎2

𝑛
)

• CI: EST ± 𝑐 SE. For 𝜇:

̂𝜇 ± 𝑐 𝜎̂√
𝑛

(𝑐 ∼ 𝑡(𝑛 − 1))

Use SRS (simple random sampling without replacement):

• Parameters:

𝜇 =
∑𝑁

𝑖=1 𝑦𝑖

𝑁

𝜎2 =
∑𝑁

𝑖=1(𝑦𝑖 − 𝜇)2

𝑁 − 1

• Estimates:

̂𝜇 =
∑𝑖∈𝒮 𝑦𝑖

𝑛

𝜎̂2 =
∑𝑖∈𝒮(𝑦𝑖 − ̂𝜇)2

𝑛 − 1

• Estimator: 𝑦𝑖 is not a realization of 𝑌𝑖. Instead, 𝑦𝑖 is a constant. What is random, is whether 𝑦𝑖 is selected
for the sample.

𝐼𝑖 = {
0 if 𝑦𝑖 is not in the sample
1 if 𝑦𝑖 is in the sample

̃𝜇 =
∑𝑁

𝑖=1 𝐼𝑖𝑦𝑖

𝑛

𝜎̃2 =
∑𝑁

𝑖=1 𝐼𝑖(𝑦𝑖 − ̂𝜇)2

𝑛 − 1

̃𝜇 ∼ 𝒩(𝜇, (1 − 𝑛
𝑁

)𝜎2

𝑛
)

where

–
𝑛
𝑁

is the sampling fraction

– 1 − 𝑛
𝑁

is the finite population correction.

Model 1 SRS

̂𝜇 ± 𝑐 𝜎̂√
𝑛

̂𝜇 ± 𝑐√1 − 𝑛
𝑁

𝜎̂√
𝑛

Let’s prove the distribution.

• P(𝐼𝑖 = 1) = 𝜋𝑖 = 𝑛
𝑁

• E[𝐼𝑖] = (0)P(𝐼𝑖 = 0) + (1)P(𝐼𝑖 = 1) = 𝑛
𝑁

= E[𝐼2
𝑖 ]
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• V(𝐼𝑖) = E[𝐼2
𝑖 ] − E[𝐼𝑖]2 = 𝑛

𝑁
− ( 𝑛

𝑁
)

2

= 𝑛
𝑁

(1 − 𝑛
𝑁

)

• E[𝐼𝑖𝐼𝑗] = (1)(1)P(𝐼𝑖 = 1, 𝐼𝑗 = 1) =
(𝑁−2

𝑛−2)
(𝑁

𝑛)
= 𝑛(𝑛 − 1)

𝑁(𝑁 − 1)

Recall:

̃𝜇 =
∑𝑁

𝑖=1 𝐼𝑖𝑦𝑖

𝑛

E[ ̃𝜇] =
∑𝑁

𝑖=1 E[𝐼𝑖]𝑦𝑖

𝑛
=

∑𝑁
𝑖=1(𝑛/𝑁)𝑦𝑖

𝑛
= 𝜇

We note that 𝐼𝑖 is not independent of 𝐼𝑗, so we must compute covariance in our variance calculation.

V( ̃𝜇) = V(
∑𝑁

𝑖=1 𝐼𝑖𝑦𝑖

𝑛
) =

∑𝑁
𝑖=1 𝑦2

𝑖 V(𝐼𝑖)
𝑛2 +

∑𝑖𝑗 𝑦𝑖𝑦𝑗Cov(𝐼𝑖, 𝐼𝑗)
𝑛2 = (1 − 𝑛

𝑁
)𝜎2

𝑛

6.3 Lecture 33.00: Sample Size Calculation

Model 1: ̂𝜇 ± 𝑐𝜎√
𝑛

where 𝜎 is known.

Set 𝐸 = 𝑐𝜎√
𝑛

and solve for 𝑛. Therefore, 𝑛 = 𝑐2𝜎2

𝐸2 .

Process

• First, we take a small sample, then estimate 𝜎.

• Find 𝑛.

• Perform a large study with 𝑛 units.

For SRS for our mean we have:
̂𝜇 ± 𝑐𝜎̂√

𝑛
√1 − 𝑛

𝑁⎵⎵⎵⎵⎵
𝐸

𝑛 = ( 𝐸2

𝑐2𝜎̂2 + 1
𝑁

)
−1

EXAMPLE 6.3.1: SRSWOR Example 1

Part 1. Assume our class has 200 students in it. I draw a sample of 5 students to find the average
on midterm 2 is 65% with a standard deviation of 3%. Build a 95% confidence interval for 𝜇. Please
assume that 𝑛 is “large” enough to apply the normality assumption.
Solution.

̂𝜇 ± 𝑐𝜎̂√
𝑛

√1 − 𝑛
𝑁

𝑐 ∼ 𝒩(0, 1)

= 65 ± 1.96(3)√
5

√1 − 5
200

= (0.62, 0.68)

The width is 0.68 − 0.62 ≈ 0.06.
Part 2. If I want to be accurate to within 0.1, 19 times out of 20 how large should 𝑛 be?

• 𝐸 = 0.1.
• 19

20 = 0.95 ⟹ 95%.
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• 𝜎 = 3.
• 𝜇 = 65.

SRS:

𝑛 = ( 𝐸2

𝑐2𝜎̂2 + 1
𝑁

)
−1

= ( 0.12

1.96232 + 1
200

)
−1

= 189.0634 = ↑ 190

Model 1: Assumes 𝑁 → ∞.

𝑛 = 𝑐2𝜎̂2

𝐸2 = 3457.44 = ↑ 3458

6.4 Lecture 34.00: Model 4 Revisited

Model 4:
𝑌𝑖
𝑛

∼ 𝒩(𝜋, 𝜋(1 − 𝜋)
𝑛

) with confidence interval:

𝜋 ∶ ̂𝜋 ± 𝑐√ ̂𝜋(1 − ̂𝜋)
𝑛

SRS for 𝜋
• SP Parameter:

𝜋 =
∑𝑁

𝑖=1 𝑦𝑖

𝑁
(𝑦𝑖 = {0, 1})

• Statistic:

̂𝜋 =
∑𝑖∈𝒮 𝑦𝑖

𝑛
= ̄𝑦

𝜎̂2 =
∑𝑖∈𝒮(𝑦𝑖 − ̄𝑦)2

𝑛 − 1
=

∑𝑖∈𝒮(𝑦2
𝑖 + ̄𝑦2 − 2𝑦𝑖 ̄𝑦)
𝑛 − 1

Recall that 𝑦𝑖 = {0, 1}. Therefore,

𝜎̂2 =
∑𝑖∈𝒮(𝑦𝑖 + ̄𝑦2 − 2𝑦𝑖 ̄𝑦)

𝑛 − 1
= 𝑛 ̄𝑦 + 𝑛 ̄𝑦2 − 2 ̄𝑦𝑛 ̄𝑦

𝑛 − 1
= 𝑛

𝑛 − 1
( ̄𝑦 − ̄𝑦2) = 𝑛

𝑛 − 1
[ ̂𝜋(1 − ̂𝜋)]

since ̄𝑦 = ̂𝜋. Now, assume that 𝑛 → ∞. Therefore,

𝜎̂2 = ̂𝜋(1 − ̂𝜋)

• Estimators:

̃𝜋 =
∑𝑁

𝑖=1 𝑦𝑖𝐼𝑖

𝑛

EXERCISE 6.4.1

In SRS, clearly show that ̃𝜋 is an unbiased estimator for 𝜋.
Solution. In SRS, ̃𝜋 is defined by:

̃𝜋 =
∑𝑁

𝑖=1 𝑦𝑖𝐼𝑖

𝑛
where 𝐼𝑖 = {1 if 𝑦𝑖 is in the sample

0 if 𝑦𝑖 is not in the sample
and 𝑦𝑖 = 0 or 1.
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In Lec 32.00: Model 1 Revisited, we derived that E[𝐼𝑖] = 𝑛/𝑁. Hence,

E[ ̃𝜋] = E[
∑𝑁

𝑖=1 𝑦𝑖𝐼𝑖

𝑛
] =

∑𝑁
𝑖=1 𝑦𝑖 E[𝐼𝑖]

𝑛
=

∑𝑁
𝑖=1 𝑦𝑖(𝑛/𝑁)

𝑛
=

∑𝑁
𝑖=1 𝑦𝑖

𝑁
= 𝜋

Therefore, in SRS ̃𝜋 is an unbiased estimator for 𝜋.

REMARK 6.4.2

̃𝜋 is normal.

V( ̃𝜋) = V(
∑𝑁

𝑖=1 𝑦𝑖𝐼𝑖

𝑛
) = ⋯ = 𝜎2

𝑛
(1 − 𝑛

𝑁
)

Replace 𝜎 by 𝜎̂2 = ̂𝜋(1 − ̂𝜋). Our confidence interval is:

̂𝜋 ± 𝑐√ ̂𝜋(1 − ̂𝜋)
𝑛

(1 − 𝑛
𝑁

)

Model 4:

̂𝜋 ± 𝑐√ ̂𝜋(1 − ̂𝜋)
𝑛

Sample Size Calculation

𝑛 = ( 𝐸2

𝜎2𝑐2 + 1
𝑁

)
−1

However, 𝜎̂2 = ̂𝜋(1 − ̂𝜋). Often, we replace 𝜎̂2 by 1/4 which is the maximum.

6.5 Lecture 35.00: SRS Examples

EXAMPLE 6.5.1: SRSWOR Example 2

According to a new poll conducted by Ipsos Reid on behalf of Postmedia News and Global Television,
42%, ‘approve’ of the performance of the Conservative government under the leadership of Stephen
Harper. For this survey, a sample of 1053 Canadians, from Ipsos’ Canadian online panel was interviewed
online. This result is 3% lower than last years’ results.
Is the difference between this year and last years’ results significant; that is, is there a difference? Use a
confidence interval with a 95% level of confidence to answer the question.
Solution.

̂𝜋 ± 𝑐√ ̂𝜋(1 − ̂𝜋)
𝑛

= 0.42 ± 1.96√0.42(1 − 0.42)
1053

= (0.39, 0.45)

Now, 0.45 is in the interval (it’s at the edge which is fine for our purposes), so there is no difference
between this year and last years’ results; that is, they are the same.

EXAMPLE 6.5.2: SRSWOR Example 3

Jeff Henry, a counsellor for Waterloo wants to know how many people he should poll so that with 95%
confidence his poll (“will you vote for me?”), is accurate with a margin of error of 1%. There are 150 000
people in his Waterloo riding.
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Solution.
• 𝑐 = 1.96.
• 𝐸 = 0.01.
• 𝑁 = 150 000.
• We should assume the worst-case scenario for the proportion; that is, ̂𝜋 = 1/2.
• 𝜎̂2 = ̂𝜋(1 − ̂𝜋).

𝑛 = ( 𝐸2

𝜎̂2𝑐2 + 1
𝑁

)
−1

= 9026.09 = ↑ 9027

EXAMPLE 6.5.3: SRSWOR Example 4

Sheila is an auditor. She has taken a sample of 15 accounts across a large company to see whether the
company is being compliant (i.e., following accounting laws). In these she has found that the amount of
misstated account values is, on average, $143.95. The variance of her sample values is $81.09. If there
are a total of 200 accounts to look at, and her auditing company allows a level of non-compliance up to
$25 000 dollars, then is this company being compliant? Make your decision at a 90% level of confidence.
Solution.

• 𝑐 = 1.645.
• ̂𝜇 = 143.95.
• 𝜎̂2 = 81.09.
• 𝑁 = 200.
• 𝑛 = 15.

̂𝜇 ± 𝑐𝜎̂√
𝑛

√1 − 𝑛
𝑁

= (140.27, 147.63)

On average the discrepancy is (140.27, 147.63) with 90% confidence. However,

200(140.27, 147.63) = (28 054, 29 526) > 25 000

We can say that the company is not being compliant.
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Assignment 7

7.1 Lecture 36.00: Regression Sampling
We want our parameter to be

𝜇𝑦 =
∑𝑁

𝑖=1 𝑦𝑖

𝑁
which is our population average.

We use

̂𝜇𝑦 =
∑𝑖∈𝒮 𝑦𝑖

𝑛
= ̄𝑦

which is our sample average.

Suppose 𝑌𝑖 is linearly related to a continuous explanatory variate called 𝑥𝑖. If that’s the case, 𝑥𝑖 has its own
population average

𝜇𝑥 =
∑𝑁

𝑖=1 𝑥𝑖

𝑁
with sample mean

̂𝜇𝑥 =
∑𝑖∈𝒮 𝑥𝑖

𝑛
= ̄𝑥

Suppose we have a linear relationship of the form 𝑌𝑖 = 𝛼 + 𝛽(𝑥𝑖 − ̄𝑥) + 𝑅𝑖 where 𝑅𝑖 ∼ 𝒩(0, 𝜎2).

We use least squares,
𝑊 = ∑

𝑖
𝑟2

𝑖 = ∑
𝑖

[𝑦𝑖 − 𝛼 − 𝛽(𝑥𝑖 − ̄𝑥)]2

We find 𝜕𝑊
𝜕𝛼 and 𝜕𝑊

𝜕𝛽 , and you can show this for homework:

̂𝛼 = ̄𝑦

̂𝛽 =
∑𝑖 𝑦𝑖(𝑥𝑖 − ̄𝑥)
∑𝑖(𝑥𝑖 − ̄𝑥)2 =

𝑆𝑥𝑦

𝑆𝑥𝑥
=

𝑠𝑥𝑦

𝑠2
𝑥

49
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where

𝑆𝑥𝑦 = ∑
𝑖

𝑦𝑖(𝑥𝑖 − ̄𝑥) = ∑
𝑖

(𝑦𝑖 − ̄𝑦)(𝑥𝑖 − ̄𝑥)

𝑠𝑥𝑦 =
𝑆𝑥𝑦

𝑛 − 1
𝑆𝑥𝑥 = ∑

𝑖
(𝑥𝑖 − ̄𝑥)2

𝑠2
𝑥 = 𝑆𝑥𝑥

𝑛 − 1

We had 𝑦𝑖 = 𝛼 + 𝛽(𝑥𝑖 − ̄𝑥) + 𝑅𝑖. We used least squares to estimate 𝛼 and 𝛽 to obtain (ignoring the 𝑅𝑖
term)

̂𝑦𝑖 = ̂𝛼 + ̂𝛽(𝑥𝑖 − ̄𝑥)

• If 𝑥𝑖 = ̄𝑥, then ̂𝑦𝑖 = ̂𝛼 = ̄𝑦.

• If 𝑥𝑖 = 𝜇𝑥, then ̂𝑦𝑖 = ̂𝛼 + ̂𝛽(𝜇𝑥 − ̄𝑥) = ̂𝜇reg.

̂𝜇reg = ̂𝛼 + ̂𝛽(𝜇𝑥 − ̄𝑥)

Estimators
The 𝛼, 𝛽, 𝜇𝑥, 𝜇𝑦 estimators are all unbiased. However,

̂𝜇reg = ̂𝛼 + ̂𝛽(𝜇𝑥 − ̄𝑥)

= ̂𝛼 − ̂𝛽( ̄𝑥 − 𝜇𝑥)

= ̄𝑦 − ̂𝛽( ̄𝑥 − 𝜇𝑥)

=
∑𝑖∈𝒮 𝑦𝑖

𝑛
− ̂𝛽(

∑𝑖∈𝒮 𝑥𝑖

𝑛
− 𝑛𝜇𝑥

𝑛
)

=
∑𝑖∈𝒮[𝑦𝑖 − ̂𝛽(𝑥𝑖 − 𝜇𝑥)]

𝑛

=
∑𝑖∈𝒮 𝑟𝑖

𝑛

̃𝜇reg =
∑𝑁

𝑖=1 𝐼𝑖𝑟𝑖

𝑛
We’re interested in three things for ̃𝜇reg:

• Distribution. We’re not going into the details, but we get that ̃𝜇reg is normally distributed.

• Expected Value.

• Variance.

Expected Value and Variance of ̃𝜇reg

E[ ̃𝜇reg] = E[ ̃𝛼 + ̃𝛽( ̃𝜇𝑥 − 𝜇𝑥)]

= E[ ̃𝜇𝑦 + ̃𝛽( ̃𝜇𝑥 − 𝜇𝑥)]

= 𝜇𝑦 + E[ ̃𝛽( ̃𝜇𝑥 − 𝜇𝑥)]⎵⎵⎵⎵⎵⎵
small
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Therefore, ̃𝜇reg is a biased estimator for 𝜇𝑦.

V( ̃𝜇reg) = V(
∑𝑁

𝑖=1 𝐼𝑖𝑟𝑖

𝑛
)

= (1 − 𝑛
𝑁

)𝜎2
𝑟

𝑛

We estimate 𝜎2
𝑟 by

𝜎̂2
𝑟 =

∑𝑖∈𝒮(𝑟𝑖 − ̄𝑟)2

𝑛 − 1
= ⋯ = 𝑊

𝑛 − 1
The confidence interval is:

̂𝜇reg ± 𝑐√1 − 𝑛
𝑁

𝜎̂𝑟√
𝑛

7.2 Lecture 37.00: Regression Sampling, Example
• In R the data set is women. Simply type women to see the data.

• We assume this is our population and that we want to know the mean height 𝜇height.

• When you do regression sampling you need to have a 𝑦 and an 𝑥.

• 𝑦: height.

• 𝑥: weight.

• Now when we talk about our 𝑥 being weight we have to assume that we know the mean weight 𝜇weight;
that is, you need to know the population value for your weight. You don’t know your population value
for your height that’s what you’re trying to build the interval about.

attach(women)
mean(height)

## [1] 65

mean(weight)

## [1] 136.7333

• 𝜇height = 65 is unknown!

• 𝜇weight ≈ 136.7333 is known, and must be known to do regression sampling.

We’re almost there where we have everything we need. Once we get everything we need, we can build an SRS
confidence interval. We need one more thing, and that’s getting a sample. The sample command below grabs
five heights from the set of heights that are there. So it grabs five of them, and then we can get the mean of
the sample height and the standard deviation of the sample heights, so this would be sigma hat for simple
random sampling.

Using SRSWOR, we take a sample of size 5 and use this as our estimate for the height.
set.seed(45376)
sample_heights = sample(height, 5)
mean(sample_heights)

## [1] 63.4

sd(sample_heights)

## [1] 3.209361
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• ̂𝜇height = 63.4.

• 𝜎̂SRS ≈ 3.209361.

Now we have enough information that we can actually build a confidence interval.
N <- nrow(women)
print(N)

## [1] 15

n <- 5
c <- qnorm(0.975)
round(mean(sample_heights) + c(-1, 1) * ((c * sd(sample_heights))/sqrt(n)) *

sqrt(1 - n/N), 1)

## [1] 61.1 65.7

• 𝑁 = 15.

• 𝑛 = 5.

• 𝑐 ≈ 1.96.

SRS: ̂𝜇height ± 𝑐𝜎̂SRS√
𝑛

√1 − 𝑛
𝑁

= 63.4 ± 1.96(3.209361)√
5

√1 − 5
15

= (61.1, 65.7)

which has a width of 4.6.
sample_weights = c(123, 129, 135, 146, 120)
mean(sample_weights)

## [1] 130.6

• ̂𝜇weight = 130.6.

We are wrong by 𝜇𝑦 − ̂𝜇𝑦 = 65 − 63.4 = 1.6 units. We note that there is a linear relationship between height
and weight.
plot(weight, height)
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Thus, we decide to use Regression Sampling.
sample_weights = sample_weights - mean(sample_weights) # x_i - bar(x)
summary(lm(sample_heights ~ sample_weights)) # Y_i ~ (x_i - bar(x))

##
## Call:
## lm(formula = sample_heights ~ sample_weights)
##
## Residuals:
## 1 2 3 4 5
## -0.04846 0.09506 0.23858 -0.16496 -0.12022
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 63.400000 0.085624 740.45 5.43e-09 ***
## sample_weights 0.309413 0.009242 33.48 5.86e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1915 on 3 degrees of freedom
## Multiple R-squared: 0.9973,Adjusted R-squared: 0.9964
## F-statistic: 1121 on 1 and 3 DF, p-value: 5.858e-05

We didn’t use a factor because this is not a discrete variable. We consider this factor to be continuous, so we
consider our weights to be a continuous value.

Therefore,

• ̂𝛼 = ̂𝜇𝑦 = 63.4.

• ̂𝛽 = 0.309413.
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Right now, the degrees of freedom is 𝑛 − 2 = 5 − 2 = 3, but we want to multiply by (𝑛 − 2)/(𝑛 − 1) as the
degrees of freedom should be 𝑛 − 1 = 5 − 1 = 4, so
sigma_r <- summary(lm(formula = sample_heights ~ sample_weights))$sigma
print(sigma_r)

## [1] 0.1914611

sigma_r_sq <- sigma_r^2 * (n - 2)/(n - 1)
print(sigma_r_sq)

## [1] 0.02749301

𝜎̂2
𝑟 = 𝜎̂2

r
3
4

= 0.19152(3/4) = 0.02749

̂𝜇reg = ̂𝜇height = ̂𝛼 + ̂𝛽(𝑥𝑖 − ̄𝑥) = 63.4 − 0.31(𝑥𝑖 − 130.6)

alpha_hat <- summary(lm(formula = sample_heights ~ sample_weights))$coefficients[1]
beta_hat <- summary(lm(formula = sample_heights ~ sample_weights))$coefficients[2]
reg <- mean(sample_heights) + beta_hat * (mean(weight) - mean(c(123,
129, 135, 146, 120)))

print(reg)

## [1] 65.29773

The regression estimate is:

̂𝜇reg = ̂𝜇height(𝜇weight) = 63.4 + 0.31(136.7333 − 130.6) = 65.3

round(reg + c(-1, 1) * c * sqrt(sigma_r_sq)/sqrt(5) * (1 - n/N),
1)

## [1] 65.2 65.4

The confidence interval is:

̂𝜇reg ± 𝑐𝜎̂𝑟√
𝑛

√1 − 𝑛
𝑁

= 65.3 ± 1.96
√

0.02749√
5

√1 − 5
15

= (65.2, 65.4)

In this case, you are only 0.3 from the true mean.

• The width of this interval is much narrower than that of the SRS. In fact, for the SRS if we go back in
time it had a width of 4.6.

• Note that your interval does not actually contain the population mean height. The population mean
height is 65, but it’s not in your interval and that’s because of the bias that comes from a regression
interval. So, the bias of a regression interval means that we may not always contain the actual value of
interest. You won’t be far off from it because of the regression line, but your interval might not contain it.

plot(weight, height)
abline(h = mean(height))
abline(v = mean(weight))
abline(alpha_hat - beta_hat * mean(c(123, 129, 135, 146, 120)),
beta_hat)
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7.3 Lecture 38.00: Regression Sampling, Example 2
A student was curious about whether they performed better with more sleep. To test this hypothesis, she
decided to write various tests on a certain number of hours (𝑥) of sleep. The grade on their test was considered
to be the response (𝑦). In total, she has written 94 tests since coming to UW. On average, she slept for 5.1
hours during those 94 tests. We consider the 9 below to be a random sample.

• Model: 𝑌𝑖 = 𝛼 + 𝛽(𝑥𝑖 − ̄𝑥) + 𝑅𝑖 where 𝑅𝑖 ∼ 𝒩(0, 𝜎2).

Questions:

• Assume the explanatory variate was not present. Build a 95% confidence interval for her mean grade
using SRSWOR.

• Use Regression sampling to build a 95% confidence interval for her mean grade.

• Compare your SRSWOR results to your regression results, what do you notice?
x <- c(4, 6, 2, 7, 5, 9, 2, 1, 8)
y <- c(75, 78, 69, 80, 77, 82, 65, 55, 85)
n <- 9
N <- 94
mu_x <- 5.1
s_xy <- sum(y * (x - mean(x)))/(n - 1)
print(s_xy)

## [1] 24.75

s_xsq <- var(x)
print(s_xsq)

## [1] 8.111111

s_ysq <- var(y)
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print(s_ysq)

## [1] 89.25

xbar <- mean(x)
print(xbar)

## [1] 4.888889

ybar <- mean(y)
print(ybar)

## [1] 74

r <- (y - ybar - (x - xbar) * sum((y - ybar) * (x - xbar))/sum((x -
xbar)^2))

sigma_rsq <- sum(r^2)/(n - 1)
print(sigma_rsq)

## [1] 13.7286

sqrt(sigma_rsq)

## [1] 3.705212

• 𝑠𝑥𝑦 = 24.75.

• 𝑠2
𝑥 = 8.11.

• 𝜎̂2
𝑦 = 𝑠2

𝑦 = 89.25.

• ̄𝑥 = 4.89.

• ̄𝑦 = 74.

• 𝜎̂2
reg = 13.72.

• 𝑁 = 94.

• 𝑛 = 9.

• 𝜇𝑥 = 5.1 (given).
alpha_hat <- ybar
print(alpha_hat)

## [1] 74

beta_hat <- s_xy/s_xsq
print(beta_hat)

## [1] 3.05137

reg <- alpha_hat + beta_hat * (mu_x - xbar)
print(reg)

## [1] 74.64418

̂𝛼 = ̄𝑦 = ̂𝜇𝑦 = 74

̂𝛽 =
𝑠𝑥𝑦

𝑠2
𝑥

= 24.75
8.11

= 3.0514

̂𝜇reg = ̂𝛼 + ̂𝛽(𝜇𝑥 − ̄𝑥) = 74 + 3(5.1 − 4.89) = 74.63
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c <- qnorm(0.975)
round(alpha_hat + c(-1, 1) * c * sqrt(s_ysq/n) * sqrt(1 - n/N),
1)

## [1] 68.1 79.9

SRS:

̂𝜇𝑦 ±
𝑐𝜎̂𝑦√

𝑛
√1 − 𝑛

𝑁
= 74 ± 1.96√89.25

9
√1 − 9

94
= (68.1, 79.9)

Roughly a width of 12.
round(reg + c(-1, 1) * c * sqrt(sigma_rsq/n) * sqrt(1 - n/N),
1)

## [1] 72.3 76.9

Reg:

̂𝜇reg ± 𝑐𝜎̂𝑟√
𝑛

√1 − 𝑛
𝑁

= 74.63 ± 1.96√13.72
9

√1 − 9
94

= (72.3, 76.9)

Roughly a width of 5.

As you will notice, the big difference between the two intervals is that the width of the regression interval is
narrower than the width of the SRS interval.



Chapter 8

Assignment 8

8.1 Lecture 39.00: Ratio Estimation (Ave.)
Model:

𝑌𝑖 = 𝛽𝑥𝑖 + 𝑅𝑖 where 𝑅𝑖 ∼ 𝒩(0, 𝑥𝑖𝜎2)

Divide by √𝑥𝑖 ⟹ 𝑌𝑖√𝑥𝑖
= 𝛽𝑥𝑖√𝑥𝑖

+ 𝑅𝑖√𝑥𝑖
where

𝑅𝑖√𝑥𝑖
∼ 𝒩(0, 𝜎2)

• It goes through the origin.

• Variance that increases with 𝑥𝑖. In fact, there is a funnel effect. To fix the funnel effect, we divide by√𝑥𝑖 as done above.

Therefore, E[ 𝑅𝑖√𝑥𝑖
] = 0 since E[𝑅𝑖] = 0 and 𝑥𝑖 is a constant. Also,

V( 𝑅𝑖√𝑥𝑖
) = V(𝑅𝑖)

𝑥𝑖
= 𝜎2𝑥𝑖

𝑥𝑖
= 𝜎2

Let 𝑌 ′
𝑖 = 𝑌𝑖√𝑥𝑖

, 𝑥′
𝑖 = 𝑥𝑖√𝑥𝑖

, and 𝑅′
𝑖 = 𝑅𝑖√𝑥𝑖

. So, our new model is

𝑌 ′
𝑖 = 𝛽𝑥′

𝑖 + 𝑅′
𝑖 where 𝑅′

𝑖 ∼ 𝒩(0, 𝜎2)

We use LS to estimate our parameters. We find

̂𝛽 = ̄𝑦
̄𝑥

𝜎̂2
ratio = 𝑊

𝑛 − 1

Our prediction is:

̂𝑦𝑖 = ̂𝛽𝑥′
𝑖 = ( ̄𝑦

̄𝑥
)𝑥′

𝑖

• If 𝑥′
𝑖 = ̄𝑥, then ̂𝑦𝑖 = ̄𝑦. Then, if 𝑥′

𝑖 = 𝜇𝑥, then ̂𝜇ratio = ( ̄𝑦
̄𝑥
)𝜇𝑥.

Now, we’re going out, and we’re going to build a confidence interval for this. And when we build a confidence
interval for this, we basically get the same logic that we got for regression sampling. All the same mathematics

58



CHAPTER 8. ASSIGNMENT 8 59

basically kicks in, there’s no real difference between the mathematics, so I’m simply going to state it. A
confidence interval for 𝜇𝑦 is:

̂𝜇ratio ± 𝑐𝜎̂ratio√
𝑛

√1 − 𝑛
𝑁

8.2 Lecture 40.00: Ratio Estimation (Ave.), Example
In R, the data set is women. Simply type women to see the data. We assume this is our population, and that we
want to know the mean height 𝜇height. We also assume we know the mean weight 𝜇weight. In fact, directly from
the data we have:
attach(women)
mu_height <- mean(height)
print(mu_height)

## [1] 65

mu_weight <- mean(weight)
print(mu_weight)

## [1] 136.7333

• 𝜇height = 65

• 𝜇weight = 136.7333

• 𝑦: height.

• 𝑥: weight.

Using SRSWOR, we take a sample of size 5 and use this for our estimate for the height:
set.seed(45376)
sample_heights = sample(height, 5)
muhat_height <- mean(sample_heights)
print(muhat_height)

## [1] 63.4

sd(sample_heights)

## [1] 3.209361

sample_weights = c(123, 129, 135, 146, 120)
muhat_weight <- mean(sample_weights)
print(muhat_weight)

## [1] 130.6

• ̂𝜇height = 63.4 which is our SRS estimate for 𝜇𝑦.

• 𝜎̂𝑦 = 3.209361.

• ̄𝑥 = ̂𝜇weight = 130.6.

We found out that we were wrong by 1.4 units. Going back a long time ago, when we used SRS, we ended up
with a confidence interval which was (60.6, 66.2). We noticed how wide it was.

When we deal with ratio estimation, the first thing we want is a linear relationship between height and weight.

plot(weight, height)
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Thus, we decide to use Ratio Sampling.
Sqrt_weights = sqrt(sample_weights)
sample_weights = sample_weights/Sqrt_weights
sample_heights = sample_heights/Sqrt_weights

• Sqrt_weights = sqrt(sample_weights) = √𝑥𝑖.

• sample_weights = sample_weights / Sqrt_weights = 𝑥𝑖/
√𝑥𝑖.

• sample_heights = sample_heights / Sqrt_weights = 𝑦𝑖/
√𝑥𝑖.

In order to remove the intercept, we need to use the -1 in the following code.
sum <- summary(lm(sample_heights ~ sample_weights - 1))
print(sum)

##
## Call:
## lm(formula = sample_heights ~ sample_weights - 1)
##
## Residuals:
## 1 2 3 4 5
## 0.11626 0.03317 -0.04613 -0.23802 0.15937
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## sample_weights 0.48545 0.00615 78.93 1.54e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1572 on 4 degrees of freedom
## Multiple R-squared: 0.9994,Adjusted R-squared: 0.9992
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## F-statistic: 6231 on 1 and 4 DF, p-value: 1.544e-07

• ̂𝛽 = 0.48545

• 𝜎̂ratio = 0.1572
̂𝜇height = ̂𝛽𝑥𝑖 = ̄𝑦

̄𝑥
= 63.4

130.6
𝑥𝑖 = 0.48545𝑥𝑖

which is our line of best fit.

The ratio estimate is
̂𝜇ratio = ̂𝜇height(𝜇weight) = 0.48545(136.7333) = 66.4

Well the real answer, was 65, so we are 1.4 units away from the real answer. However, that was closer than
SRS which was 1.6 units away from the real answer.
beta <- sum$coefficients[1]
mu_ratio <- beta * mu_weight
sigma_ratio <- sum$sigma
n <- 5
N <- 15
c <- qnorm(0.975)
round(mu_ratio + c(-1, 1) * ((c * sigma_ratio)/sqrt(n)) * sqrt(1 -
n/N), 1)

## [1] 66.3 66.5

A 95% confidence interval for 𝜇𝑦 is:

̂𝜇ratio ± 𝑐𝜎̂ratio√
𝑛

√1 − 𝑛
𝑁

= 66.4 ± 1.96(0.1572)√
5

√1 − 5
15

= (66.3, 66.5)

Width: 0.2

Note:

• Width of CI using Ratios is narrower than SRS.

• There is bias in ratio estimation. Notice that the interval doesn’t contain 65 which is the real answer.

Requirements:

• Regression and Ratio require highly correlated 𝑌𝑖 and 𝑥𝑖.

• Ratio requires an intercept of zero.

• Both Regression and Ratio are narrower than SRS, but Regression and Ratio are both biased.

Technique Estimate CI

SRS ̂𝜇𝑦 ̂𝜇𝑦 ±
𝑐𝜎̂𝑦√

𝑛
√1 − 𝑛

𝑁

Reg ̂𝜇reg = ̄𝑦 + ̂𝛽(𝜇𝑥 − ̄𝑥) ̂𝜇reg ±
𝑐𝜎̂reg√

𝑛
√1 − 𝑛

𝑁

Ratio ̂𝜇ratio = ̄𝑦
̄𝑥
𝜇𝑥 ̂𝜇ratio ± 𝑐𝜎̂ratio√

𝑛
√1 − 𝑛

𝑁
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8.3 Lecture 41.00: Ratio Estimation
Suppose we had six students in our class. We selected them out at random using SRS. We record their grade
in Calculus 1 and their gender.

Gender Grade

𝑀 70
𝐹 70
𝑀 85
𝐹 85
𝑀 90
𝐹 90

The males on average: ̄𝑥𝑀 = (70 + 85 + 90)/3. Let

• 𝑦𝑖 be the grade, and

• 𝑧𝑖 = {1 if male
0 otherwise

Our estimate is ̂𝜃,
̂𝜃 =

∑𝑖∈𝒮 𝑦𝑖𝑧𝑖

∑𝑖∈𝒮 𝑧𝑖

• ∑𝑖∈𝒮 𝑦𝑖𝑧𝑖 counts the number of grades of those males.

• ∑𝑖∈𝒮 𝑧𝑖 counts the number of males you happen to have.

Our parameter is 𝜃,

𝜃 =
∑𝑁

𝑖=1
𝑦𝑖𝑧𝑖
𝑁

∑𝑁
𝑖=1

𝑧𝑖
𝑁

= 𝜇
𝜋

• 𝜇 is the average of the male grades.

• 𝜋 is the proportion of the people that are male.

Therefore, we can write our estimate as ̂𝜃 = ̂𝜇/ ̂𝜋.

Estimator
Our estimator asks “what’s random?” What’s random is whether you’re in the sample. We define an indicator
variable 𝐼𝑖 which will be 1 if it’s in our population.

̃𝜃 =
∑𝑁

𝑖=1 𝐼𝑖𝑦𝑖𝑧𝑖
𝑛

∑𝑁
𝑖=1 𝐼𝑖𝑧𝑖

𝑛

= ̃𝜇
̃𝜋

Now there’s a bit of math involved in this because unfortunately we have never looked at the ratio of two
random variables, and it’s very difficult to do. Instead, we’re going to use Taylor’s Approximation (Lecture
41.50 goes more in detail).

Taylor’s Approximation gives:
̃𝜇
̃𝜋
≈ 𝜇

𝜋
+ 1

𝜋
( ̃𝜇 − 𝜇) − 𝜇

𝜋2 ( ̃𝜋 − 𝜋)

where ̃𝜇 and ̃𝜋 are both obtained by SRS. So we obtain the proportion and average from simple random
sampling.

• The approximation is approximately normal (there’s a Gaussian extension that allows this to be true).
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Expectation and Variance

E[ ̃𝜇
̃𝜋
] ≈ E[𝜇

𝜋
+ 1

𝜋
( ̃𝜇 − 𝜇) − 𝜇

𝜋2 ( ̃𝜋 − 𝜋)]

= 𝜇
𝜋

+ 1
𝜋

(E[ ̃𝜇] − 𝜇) − 𝜇
𝜋2 (E[ ̃𝜋] − 𝜋)

= 𝜇
𝜋

since E[ ̃𝜇] = 𝜇 and E[ ̃𝜋] = 𝜋 (by SRS, unbiased).

V( ̃𝜇
̃𝜋
) ≈ V(𝜇

𝜋
+ 1

𝜋
( ̃𝜇 − 𝜇) − 𝜇

𝜋2 ( ̃𝜋 − 𝜋))

= 1
𝜋2 V( ̃𝜇 − 𝜇 − 𝜇 ̃𝜋

𝜋
+ 𝜇)

= 1
𝜋2 V( ̃𝜇 − 𝜇 ̃𝜋

𝜋
)

This is an average. Therefore, we end up with an estimated variance.

V( ̃𝜇
̃𝜋
) ≈ 1

𝜋2
𝜎2
ratio
𝑛

(1 − 𝑛
𝑁

)

A confidence interval is:
EST ± 𝑐SE = ̂𝜃 ± 𝑐 1

̂𝜋
√1 − 𝑛

𝑁
𝜎̂ratio√

𝑛
where

𝜎̂2
ratio =

∑𝑖∈𝒮(𝑦𝑖 − ̂𝜃𝑧𝑖)
2

𝑛 − 1

8.4 Lecture 41.50: Taylor’s Approximation
Calculus 1: 𝑓(𝑥) ≈ 𝑓(𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0).

EXAMPLE 8.4.1: Calculus 1 Taylor’s Approximation

Approximate 𝑓(1.1) = ln(1.1) about 𝑥0 = 1.
Solution.

𝑓(1.1) ≈ 𝑓(1) + 𝑓 ′(1)(1.1 − 1) = ln(1) + 1
𝑥

∣
𝑥=1

(1.1 − 1) = 0 + 1(0.1) = 0.1

Calculus 3:
𝑓(𝑥, 𝑦) ≈ 𝑓(𝑥0, 𝑦0) + 𝜕𝑓(𝑥0, 𝑦0)

𝜕𝑥
(𝑥 − 𝑥0) + 𝜕𝑓(𝑥0, 𝑦0)

𝜕𝑦
(𝑦 − 𝑦0)

EXAMPLE 8.4.2: Calculus 3 Taylor’s Approximation

Approximate 𝑓(1.1, 1.1) = ln(1.1 × 1.1) about the point (1, 1).
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Solution.

𝑓(1.1, 1.1) ≈ 𝑓(1, 1) + 𝜕𝑓(1, 1)
𝜕𝑥

(𝑥 − 𝑥0) + 𝜕𝑓(1, 1)
𝜕𝑦

(𝑦 − 𝑦0)

= ln(1) + 1
𝑥

∣
𝑥=1,𝑦=1

(1.1 − 1) + 1
𝑦

∣
𝑥=1,𝑦=1

(1.1 − 1)

= 0 + 0.1 + 0.1
= 0.2

Approximate: 𝑓(𝑥, 𝑦) = 𝑥/𝑦 about the point (𝑥0, 𝑦0).

𝑓(𝑥, 𝑦) ≈ 𝑓(𝑥0, 𝑦0) + 1
𝑦0

(𝑥 − 𝑥0) + (−𝑥0
𝑦2

0
)(𝑦 − 𝑦0)

= 𝑥0
𝑦0

+ 1
𝑦0

(𝑥 − 𝑥0) − 𝑥0
𝑦2

0
(𝑦 − 𝑦0)

Therefore, approximating ̃𝜇/ ̃𝜋 about (𝜇, 𝜋):

̃𝜇
̃𝜋
≈ 𝜇

𝜋
+ 1

𝜋
( ̃𝜇 − 𝜇) − 𝜇

𝜋2 ( ̃𝜋 − 𝜋)

8.5 Lecture 42.00: Ratio Estimation, Example

EXAMPLE 8.5.1

The number of people in the Kitchener riding is 89 422. Stephen Harper wants to know the average age
of people in the riding who would vote for him. Using SRSWOR, he selects 80 people, and finds that the
average age of those who vote for him is 67. 42 of those poled would vote for him. If the estimated
variance is 5.42, build a 95% confidence interval for the average age of those who vote for Stephen
Harper.
Solution.

• The proportion of people that would vote for Stephen Harper is ̂𝜋 = 42/80.
• The average age of those that would vote for him is ̂𝜃 = ̂𝜇/ ̂𝜋 = 67.

Therefore, a 95% confidence interval for the average age of those who vote for Stephen Harper is:

̂𝜃 ± 𝑐 1
̂𝜋
𝜎̂ratio√

𝑛
√1 − 𝑛

𝑁
= 67 ± 1.96( 1

42/80
)√5.42

80
√1 − 80

89422
= (66.03, 67.97)
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Assignment 9

9.1 Lecture 43.00: Stratified Sampling
Suppose that you’re interested in the population as a whole, but at the same time you’re interested in some
sub-population of the population. For example suppose you’re interested in University of Waterloo students,
but we’re also interested in Math faculty students. You would use a stratified sample. In this case, you might
perform SRS over a sub-population and then combine that together to get the entire population so what would
that notationally look like?

Suppose we have a frame 𝑈, and we divide 𝑈 into sub-frames 𝑈1, 𝑈2, … , 𝑈𝐻 where

(1) 𝑈1 ∪ 𝑈2 ∪ 𝑈3 ∪ ⋯ ∪ 𝑈𝐻 = 𝑈.

(2) For any 𝑖 ≠ 𝑗, 𝑈𝑖 ∩ 𝑈𝑗 = ∅.

(3) Define |𝑈ℎ| = 𝑁ℎ and |𝑈| = 𝑁.

(4) 𝑁1 + 𝑁2 + ⋯ + 𝑁ℎ = 𝑁.

Parameter

𝜇 = 𝑁1𝜇1 + 𝑁2𝜇2 + ⋯ + 𝑁𝐻𝜇𝐻
𝑁

= 𝑁1
𝑁

𝜇1 + 𝑁2
𝑁

𝜇2 + ⋯ + 𝑁ℎ
𝑁

𝜇𝐻

= 𝑤1𝜇1 + ⋯ + 𝑤𝐻𝜇𝐻

=
𝐻

∑
𝑖=1

𝑤𝑖𝜇𝑖

Estimate

We would use SRS to estimate the strata’s average.

̂𝜇 =
𝐻

∑
𝑖=1

𝑤𝑖 ̂𝜇𝑖

When we get the strata’s average, and we multiply by the weight we add over the strata’s to get the population
average.
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Estimator

̃𝜇 =
𝐻

∑
𝑖=1

𝑤𝑖 ̃𝜇𝑖

where ̃𝜇𝑖 is the SRS random variable, hence it is unbiased and normally distributed. Therefore, the weighted
average of the estimator will be normally distributed. Now, we need to find the expectation and variance of

̃𝜇.

Expectation of ̃𝜇

E[ ̃𝜇] = E[
𝐻

∑
𝑖=1

𝑤𝑖 ̃𝜇𝑖] =
𝐻

∑
𝑖=1

𝑤𝑖 E[ ̃𝜇𝑖] =
𝐻

∑
𝑖=1

𝑤𝑖𝜇𝑖 since SRS is unbiased.

Variance of ̃𝜇

At this point in the course the formulas become ugly.

V( ̃𝜇) = V(
𝐻

∑
𝑖=1

𝑤𝑖 ̃𝜇𝑖) =
𝐻

∑
𝑖=1

𝑤2
𝑖 V( ̃𝜇𝑖)

where ̃𝜇𝑖 ⟂⟂ ̃𝜇𝑗 since no unit is in both groups. Therefore,

V( ̃𝜇) =
𝐻

∑
𝑖=1

𝑤2
𝑖

𝜎2
𝑖

𝑛𝑖
(1 − 𝑛𝑖

𝑁𝑖
)

Confidence Interval for 𝜇

̂𝜇 ± 𝑐√
𝐻

∑
𝑖=1

𝑤2
𝑖

𝜎2
𝑖

𝑛𝑖
(1 − 𝑛𝑖

𝑁𝑖
) where 𝑐 ∼ 𝒩(0, 1).

Proportion
For a proportion, we want to estimate 𝜋.

Parameter

𝜋 =
𝐻

∑
𝑖=1

𝑤𝑖𝜋𝑖

Estimate

̂𝜋 =
𝐻

∑
𝑖=1

𝑤𝑖 ̂𝜋𝑖 which uses SRS.

Estimator

̃𝜋 =
𝐻

∑
𝑖=1

𝑤𝑖 ̃𝜋𝑖

Confidence Interval for 𝜋

̂𝜋 ± 𝑐√
𝐻

∑
𝑖=1

𝑤2
𝑖

𝜎2
𝑖

𝑛𝑖
(1 − 𝑛𝑖

𝑁𝑖
) where 𝑐 ∼ 𝒩(0, 1).

You’ll remember that we have worked out before that 𝜎2
𝑖 = 𝜋𝑖(1 − 𝜋𝑖).



CHAPTER 9. ASSIGNMENT 9 67

9.2 Lecture 44.00: Stratified, Allocation
Today we’re going to talk about something called Allocation. For example, allocation is when you have a
sample of 100 units, and you have four strata. How should you spend those 100 units? Should three quarters
of them go to one stratum, and the remaining quarter be split among the last three strata? We define how you
divide them up to be stratification. To make that decision there are two types that we’re going to talk about
today.

(1) Proportional.

(2) Neyman or optimal.

Proportional
We sample based on the size of the strata. In other words, the bigger the strata size, the bigger the sample
size.

𝑛ℎ = 𝑤ℎ𝑛

EXAMPLE 9.2.1

Provinces Population (millions)

ON 10
QUE 5
BC 3
ALB 2

Total 20

If we have 𝑛 = 100 units to sample, ON should get 𝑛ON = 𝑤ON(𝑛) = 1/2(100) = 50 units.

Neyman
In Neyman allocation, we select our sample size and values that minimize the stratified variance.

V( ̃𝜇) =
𝐻

∑
𝑖=1

𝑤2
𝑖

𝜎2
𝑖

𝑛𝑖
(1 − 𝑛𝑖

𝑁𝑖
)

subject to 𝑛 = 𝑛1 + 𝑛2 + ⋯ + 𝑛𝐻. This ends up being a Lagrange multiplication problem. So minimize

𝑊( ̃𝜇) =
𝐻

∑
𝑖=1

𝑤2
𝑖

𝜎2
𝑖

𝑛𝑖
(1 − 𝑛𝑖

𝑁𝑖
) + 𝜆(𝑛 − 𝑛1 − ⋯ − 𝑛𝐻)

Find 𝜕𝑊
𝜕𝜆 , 𝜕𝑊

𝜕𝑛𝑖
and set to zero to get:

𝑛𝑖 = 𝑛𝜎𝑖𝑤𝑖

∑𝐻
𝑗=1 𝜎𝑗𝑤𝑗

REMARK 9.2.2

• 𝑛𝑖 ∝ 𝜎𝑖. So, if you have more variability in your stratum, then you’re going to want a larger
sample size. That should make a lot of sense because if you have a lot of variability, you can
reduce the variability by having a larger sample size, remember, the variability is the average of
the variance divided by 𝑛. So, the larger your sample size the smaller the variance ends up being.

• 𝑛𝑖 ∝ 𝑤𝑖. The larger the strata, the more units you will want allocated to it.
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• If 𝜎1 = 𝜎2 = ⋯ = 𝜎𝐻, then
𝑛𝑖 = 𝑛𝑤𝑖

∑𝐻
𝑖=1 𝑤𝑖

= 𝑛𝑤𝑖

which is proportional allocation since ∑𝐻
𝑖=1 𝑤𝑖 = 1.

Just like when we did with the small sample size, we take a small sample, and you use the small sample to
estimate these unknown 𝜎’s. Once you’ve estimated these unknown 𝜎’s, you’d use them to determine how you
should allocate your larger sample size to the actual strata of interest.

9.3 Lecture 45.00: Stratified Example

9.3.1 Stratified 1
I am interested in the average tuition paid by students at the University of Waterloo. Additionally, I want to
know how much each faculty student is paying on average. Hence, I decide to stratify by Faculty (assume
students belong to a single faculty).

Faculty 𝑁 ̂𝜇 𝑛 𝑊 𝜎̂

Math 6600 4500 15 0.22 400
Arts 9000 3000 10 0.30 200

Science 5400 4500 25 0.18 300
AHS 1500 3200 35 0.05 100

Engineer 6000 7000 15 0.20 100
EVS 1500 3500 20 0.05 200
Total 30000 120

Build a 95% confidence interval for the mean tuition in Math.

ci <- 4500 + c(-1, 1) * qnorm(0.975) * 400/sqrt(15) * (1 - 15/6600)
round(ci)

## [1] 4298 4702

̂𝜇math ± 𝑐𝜎̂math√𝑛math
√1 − 𝑛math

𝑁math
= 4500 ± 1.96(400)√

15
√1 − 15

6600
= (4298, 4702)

Build a 95% confidence interval for the mean tuition at UW.

Since we’ve used SRS in each of the strata, we have to use stratified sampling.
N_i <- c(6600, 9000, 5400, 1500, 6000, 1500)
N <- sum(N_i)
w_i <- N_i/N
n_i <- c(15, 10, 25, 35, 15, 20)
mu_i <- c(4500, 3000, 4500, 3200, 7000, 3500)
sigma_i <- c(400, 200, 300, 100, 100, 200)
mu <- sum(w_i * mu_i)
variance <- sum(w_i^2 * sigma_i^2/n_i * (1 - n_i/N_i))
ci <- mu + c(-1, 1) * qnorm(0.975) * sqrt(variance)
mu
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## [1] 4435

round(variance, 3)

## [1] 1023.024

round(ci)

## [1] 4372 4498

̂𝜇 =
𝐻

∑
𝑖=1

𝑤𝑖 ̂𝜇𝑖 = 4435

V̂( ̃𝜇) =
𝐻

∑
𝑖=1

𝑤2
𝑖 𝜎̂2

𝑖
𝑛𝑖

(1 − 𝑛𝑖
𝑁𝑖

) = 1023.024

Therefore, a 95% confidence interval for 𝜇 is:

̂𝜇 ± 𝑐√V̂( ̃𝜇) = 4435 ± 1.96
√

1023.024 = (4372, 4498)

9.3.2 Stratified 2
We continue from Section 9.3.1.

A proportional allocation of our sample values to each stratum.
n <- 120
round(n * w_i)

## [1] 26 36 22 6 24 6

• 𝑛math = 𝑛𝑤math = 120(0.22) = 26.

• 𝑛arts = 36.

• 𝑛science = 22.

• 𝑛ahs = 6.

• 𝑛eng = 24.

• 𝑛evs = 6.

An optimal allocation of our sample values to each stratum.

round(n * sigma_i * w_i/sum(w_i * sigma_i))

## [1] 45 30 27 3 10 5

• 𝑛math = 𝑛𝜎math𝑤math

∑6
𝑗=1 𝑤𝑗𝜎𝑗

= 120(400)(0.22)
237 = 45.

• 𝑛arts = 30.

• 𝑛science = 27.

• 𝑛ahs = 3.

• 𝑛eng = 10.

• 𝑛evs = 120 − 45 − 30 − 27 − 3 − 10 = 5.
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9.3.3 Stratified 3
A course has 3 sections all taught by one instructor. There are 205, 212, and 253 people in each of the sections
1, 2, and 3 respectively. At the end of the term the instructor is curious about how well the students performed.
The administration takes a simple random sampling of 15, 12, and 14 people respectively from each section.
The averages for each section are 75, 70, and 72 respectively with standard deviations of 10, 15, and 5. Build a
95% confidence interval for the mean grade of the instructors course.
N_i <- c(205, 212, 253)
N <- sum(N_i)
w_i <- N_i/N
n_i <- c(15, 12, 14)
mu_i <- c(75, 70, 72)
sigma_i <- c(10, 15, 5)
mu <- sum(w_i * mu_i)
variance <- sum(w_i^2 * sigma_i^2/n_i * (1 - n_i/N_i))
ci <- mu + c(-1, 1) * qnorm(0.975) * sqrt(variance)
mu

## [1] 72.28507

variance

## [1] 2.589983

round(ci, 3)

## [1] 69.131 75.439

̂𝜇 =
𝐻

∑
𝑖=1

𝑤𝑖 ̂𝜇𝑖 = 72.28507

V̂( ̃𝜇) =
𝐻

∑
𝑖=1

𝑤2
𝑖 𝜎̂2

𝑖
𝑛𝑖

(1 − 𝑛𝑖
𝑁𝑖

) = 2.589983

Therefore, a 95% confidence interval for 𝜇 is:

̂𝜇 ± 𝑐√V̂( ̃𝜇) = 72.28507 ± 1.96
√

2.589983 = (69.131, 75.439)

9.4 Lecture 46.00: Post Stratification
Until now what you had some strata, performed SRS on each stratum, then combined them, and looked at the
population value 𝜇. See Figure 9.1. In post stratification, the idea is that you have done an SRS of some large

𝜇

SRS

SRS

SRS

Figure 9.1: Regular Stratification

population, and then decided afterwards that you wanted to stratify. At this point, you then break it into three.
Notice that the SRS is done at the start as opposed to at the end. See Figure 9.2.
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SRS

Figure 9.2: Post Stratification

Mathematically, your sample sizes end up being random, which has an influence on how we calculate things.
Although, it doesn’t actually have an influence on the actual mathematics at the end of the day, so the resultants
are the same. For example, the post stratification estimate is very similar to that of stratified:

̂𝜇post = 𝑤1𝜇1 + ⋯ + 𝑤𝐻𝜇𝐻

The estimated variance for post stratification is:

̂V( ̃𝜇post) =
𝐻

∑
𝑖=1

𝑤2
𝑖 (1 − 𝑛𝑖

𝑁𝑖
)𝜎̂2

𝑖
𝑛𝑖

A confidence interval for 𝜇post is given by:

̂𝜇post ± 𝑐√ ̂V( ̃𝜇post) where 𝑐 ∼ 𝒩(0, 1)

9.5 Lecture 47.00: Non-Response
Non-response means that someone didn’t respond to our survey. All the surveys of human respondents have
non-response. Non-response causes bias, it is a form of error that can skew our results. The response rate (or
the proportion of people that respond) is hard to define and your text goes to some length to define it. To
correct non-response, we can do something called two-phase sampling:

• Phase 1: Typical SRS with sample size 𝑛.

• Phase 2: Sub-sample 𝑚 non-responders from Phase 1.

This is a stratified design with responders and non-responders as your strata.

The estimate is
̂𝜇 = 𝑛𝑅

𝑛
̂𝜇𝑅 + 𝑛𝑚

𝑛
̂𝜇𝑚

• ̂𝜇 = population estimate.

• 𝑛𝑅 = number of responders.

• 𝑛 = number of people you ask in general.

• ̂𝜇𝑅 = response average.

• 𝑛𝑚 = number of missing people.

• ̂𝜇𝑚 = average of the missing people (the non-responders).

There’s a similar one for the proportion.

̂𝜋 = 𝑛𝑅
𝑛

̂𝜋𝑅 + 𝑛𝑚
𝑛

̂𝜋𝑚

Those are the estimates that you would use. The variance is very ugly, so we’ll ignore it today.
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Appendix

Normal:
𝑓(𝑥) = P(𝑋 = 𝑥) = 1√

2𝜋𝜎
exp{−(𝑥 − 𝜇)2

2𝜎2 }

• 𝐹(𝑥) = P(𝑋 ≤ 𝑥) can be obtained with pnorm(𝑥,𝜇,𝜎) and gives the value of 𝑝.

• 𝐹 −1(𝑝) can be obtained with qnorm(𝑝,𝜇,𝜎) and gives the value of 𝑥.

• 𝑓(𝑥) = P(𝑋 = 𝑥) can be obtained with dnorm(𝑥,𝜇,𝜎). Note that this is not a probability.
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10.1 Tables

10.1.1 𝒩(0, 1) Cumulative Distribution Function

−4 −3 −2 −1 0 1 2 3 4

0

0.1

0.2

0.3

0.4

𝑥
𝑓(

𝑥)

𝐹 (𝑥) = P(𝑋 ≤ 𝑥)

Table 10.1: 𝐹(𝑥) = P(𝑋 ≤ 𝑥) where 𝑋 ∼ 𝒩(0, 1) and 𝑥 ≥ 0
𝑥 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
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10.1.2 𝑡 Quantiles

Table 10.2: Quantiles of the 𝑡 distribution with 𝑛 degrees of freedom

𝑛 / 𝑝 0.6 0.7 0.8 0.9 0.95 0.975 0.99 0.995 0.9995

1 0.325 0.727 1.376 3.078 6.314 12.706 31.821 63.657 636.62
2 0.289 0.617 1.061 1.886 2.920 4.303 6.965 9.925 31.599
3 0.277 0.584 0.978 1.638 2.353 3.182 4.541 5.841 12.924
4 0.271 0.569 0.941 1.533 2.132 2.776 3.747 4.604 8.610
5 0.267 0.559 0.920 1.476 2.015 2.571 3.365 4.032 6.869
6 0.265 0.553 0.906 1.440 1.943 2.447 3.143 3.707 5.959
7 0.263 0.549 0.896 1.415 1.895 2.365 2.998 3.499 5.408
8 0.262 0.546 0.889 1.397 1.860 2.306 2.896 3.355 5.041
9 0.261 0.543 0.883 1.383 1.833 2.262 2.821 3.250 4.781
10 0.260 0.542 0.879 1.372 1.812 2.228 2.764 3.169 4.587
11 0.260 0.540 0.876 1.363 1.796 2.201 2.718 3.106 4.437
12 0.259 0.539 0.873 1.356 1.782 2.179 2.681 3.055 4.318
13 0.259 0.538 0.870 1.350 1.771 2.160 2.650 3.012 4.221
14 0.258 0.537 0.868 1.345 1.761 2.145 2.624 2.977 4.140
15 0.258 0.536 0.866 1.341 1.753 2.131 2.602 2.947 4.073
16 0.258 0.535 0.865 1.337 1.746 2.120 2.583 2.921 4.015
17 0.257 0.534 0.863 1.333 1.740 2.110 2.567 2.898 3.965
18 0.257 0.534 0.862 1.330 1.734 2.101 2.552 2.878 3.922
19 0.257 0.533 0.861 1.328 1.729 2.093 2.539 2.861 3.883
20 0.257 0.533 0.860 1.325 1.725 2.086 2.528 2.845 3.850
21 0.257 0.532 0.859 1.323 1.721 2.080 2.518 2.831 3.819
22 0.256 0.532 0.858 1.321 1.717 2.074 2.508 2.819 3.792
23 0.256 0.532 0.858 1.319 1.714 2.069 2.500 2.807 3.768
24 0.256 0.531 0.857 1.318 1.711 2.064 2.492 2.797 3.745
25 0.256 0.531 0.856 1.316 1.708 2.060 2.485 2.787 3.725
26 0.256 0.531 0.856 1.315 1.706 2.056 2.479 2.779 3.707
27 0.256 0.531 0.855 1.314 1.703 2.052 2.473 2.771 3.690
28 0.256 0.530 0.855 1.313 1.701 2.048 2.467 2.763 3.674
29 0.256 0.530 0.854 1.311 1.699 2.045 2.462 2.756 3.659
30 0.256 0.530 0.854 1.310 1.697 2.042 2.457 2.750 3.646

𝒩(0, 1) 0.253 0.524 0.842 1.282 1.645 1.960 2.326 2.576 3.291
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